




V01

# INSTALLATION MANUAL OF ENERGY STORAGE SYSTEM STORION-H30/H50-G3



### Alpha ESS Co., Ltd.

 +86 513 8060 6891  
 info@alpha-ess.com  
 www.alphaess.com  
 No. 1086 Bihua Road, Tongzhou District, Nantong City, Jiangsu Province, China

### Alpha ESS International Pte. Ltd.

 +65 6513 1125 / +65 6513 1126  
 Singapore@alpha-ess.com  
 2 Corporation Road #01-06A Corporation Place 618494 Singapore

### Alpha ESS Europe GmbH

 +49 6196 7863485  
 deutschland@alpha-ess.de  
 https://alphaess.de/  
 Alfred-Herrhausen-Allee 3-5, 65760 Eschborn, Germany

### Alpha ESS Benelux B.V.

 http://www.alphaess.nl/  
 mailto:contact@alphaess.nl  
 Room 113 F1, High Tech Campus 41.5656 AEEindhoven.Netherlands

### Alpha ESS UK Co., Ltd

 +44 330 043 2610  
 info@alpha-ess.co.uk  
 https://www.alpha-ess.co.uk/  
 Drake house, Long street, Dursley, gl11 4hh UK

### Alpha ESS Italy S.r.l.

 +39 339 462 4288  
 info@alphaess.it  
 https://www.alphaess.it  
 Via Del Molinuzzo 83, 59100 Prato (PO), Italy

### Alpha ESS Australia Pty. Ltd.

 +61 02 9000 7676  
 techsupport@alphaess.au  
 www.alphaess.au  
 8/15-21 Gibbes Street, Chatswood, NSW 2067 Australia

### Alpha ESS NZ Ltd.

 +64 0800 769 377  
 info@alpha-ess.com  
 www.alpha-ess.co.nz  
 19 Arrenway Drive, Albany, 0630, New Zealand

### Alpha ESS South Africa (Pty.) Ltd.

 +27 10-745-5653  
 info.sa@alpha-ess.com  
 Bryanston, Johannesburg, 2191

### Alpha ESS West Africa Co., Ltd.

 +234 706 235 1713  
 info.ng@alpha-ess.com  
 www.africa.alphaess.com  
 Lagos, Nigeria

### Mult-Power AlphaESS (Kenya) Co., Ltd.

 +254 0112 666 888  
 info.ke@alpha-ess.com  
 www.africa.alphaess.com  
 House No.5, Kirichwa Lane Court, Ngong Road, Nairobi, Kenya.

## Copyright Statement

This manual is copyrighted by Alpha ESS Co., Ltd. and all rights are reserved. Without the written permission of our company, no organization or individual may extract or copy part or all of the content of this document without authorization, nor may they disseminate it in any form. Unauthorized modification or disassembly of the system is strictly prohibited.

Please keep this manual safe and strictly follow all safety and operating instructions contained within this manual. Do not install or operate the system before reading this manual.

## Note

The products, services, or features you purchase are subject to the AlphaESS commercial contract and terms. Some of the products, services, or features described in this document may not be within the scope of your purchase or use. Unless otherwise agreed in the contract, Alpha ESS makes no express or implied warranties regarding the content of this document.

Due to product version upgrades or other reasons, the content of this document may be updated periodically. This document is intended for guidance only and does not constitute any form of commitment. The actual product shall prevail.

If the entire system needs to be powered off, you must first manually shut down the Windows operating system on the SCADA. Ensure that the Windows operating system has shut down properly before proceeding with the power-off process.

Please note that the SCADA system and cloud platform accounts are not interchangeable.

## Preface

### Overview

The STORION-H30/H50-G3 energy storage system features high integration and high density design, with flexible expansion capabilities and strong grid connection performance. It is a high-quality, stable, and high-tech product used in today's power supply applications.

This manual is specifically designed to resolve operational issues, including safety notices, product functions, and product maintenance.

### Symbol Convention

The following table describes the symbols that may appear in this manual and their meanings.

| Symbol                                                                                      | Description                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  CAUTION | Indicates a potential risk; if not avoided, it may cause the system to fail to operate properly or report faults.                                                                           |
|  WARNING | Indicates a moderate potential hazard; if not avoided, it may lead to system damage or personal injury.                                                                                     |
|  DANGER  | Indicates a high potential hazard; if not avoided, it will result in death or serious injury.                                                                                               |
|  NOTE    | Provides additional explanations for key information in the text. "Explanations" are not safety warnings and do not involve information related to personal, system, or environmental harm. |

## Terminology

### 1. Battery Management System (BMS)

Monitors the operational information of battery cells, battery packs, and system units (such as voltage, current, temperature, and battery protection parameters), and intelligently assesses the state of charge (SOC), state of health (SOH), and total energy output to ensure battery safety.

### 2. Energy Management System (EMS)

Consists of data collection and monitoring systems and supports automatic power generation control, economic dispatch control, and power system status and safety analysis.

### 3. Battery Energy Storage System (BESS)

A combination of series- and parallel-connected batteries and the BMS, used to connect the DC side of PCS.

### 4. Energy Storage System (ESS)

A combination of a battery system and power conversion systems (PCSs) such as STO-RION-H30/H50-G3. An ESS can be used as an independent power source or be directly controlled by a monitoring system.

### 5. Photovoltaic (PV)

A PV power system is a new type of power generation system that utilizes the photovoltaic effect of semiconductor materials in solar cells to directly convert solar radiation energy into electrical energy.

## 6. On-Grid System

On-grid systems typically consist of PV strings, PCSs, battery systems, and the power grid. When the electricity generated by the PV strings is sufficient, the excessive electricity can be fed into the grid. When the electricity generated by the PV strings and battery system is insufficient, the grid can supply power to the load.

## 7. Off-Grid System

Off-grid systems are suitable for areas without a grid or where the grid power is unstable. These systems typically consist of PV strings, energy storage inverters, battery systems, and generators. When the battery has sufficient energy, the load is powered by the PV system and the battery. If the battery energy is insufficient, the generator powers the load while charging the battery system.

## Version Information

| Version | Date       | Content |
|---------|------------|---------|
| V01     | 2025.09.01 | New     |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |

## Contents

|                                             |           |
|---------------------------------------------|-----------|
| <b>Copyright Statement</b> .....            | <b>3</b>  |
| <b>Note</b> .....                           | <b>4</b>  |
| <b>Preface</b> .....                        | <b>5</b>  |
| <b>Terminology</b> .....                    | <b>6</b>  |
| <b>Version Information</b> .....            | <b>8</b>  |
| <b>Contents</b> .....                       | <b>9</b>  |
| <b>1. Safety Instructions</b> .....         | <b>12</b> |
| <b>1.1 Operator Requirements</b> .....      | <b>12</b> |
| <b>1.2 Personal Safety</b> .....            | <b>13</b> |
| <b>1.3 Electrical Safety</b> .....          | <b>15</b> |
| 1.3.1 Grounding Requirements .....          | 15        |
| 1.3.2 Cabling Requirements.....             | 15        |
| <b>1.4 Mechanical Safety</b> .....          | <b>16</b> |
| 1.4.1 Transportation Safety.....            | 16        |
| 1.4.2 Hoisting Safety .....                 | 17        |
| 1.4.3 Working-at-Heights Safety .....       | 18        |
| 1.4.4 Aerial Safety.....                    | 19        |
| <b>1.5 Environmental Requirements</b> ..... | <b>19</b> |
| 1.5.1 Site Selection Requirements.....      | 19        |
| 1.5.2 Foundation Requirements.....          | 22        |

## Contents

---

|                                                          |           |
|----------------------------------------------------------|-----------|
| <b>2. System Introduction .....</b>                      | <b>24</b> |
| <b>2.1 Product Introduction .....</b>                    | <b>24</b> |
| <b>2.2 Product Features .....</b>                        | <b>24</b> |
| <b>2.3 Product Composition.....</b>                      | <b>25</b> |
| 2.3.1 Appearance Introduction.....                       | 25        |
| 2.3.2 Indicator Light Function Description.....          | 26        |
| 2.3.3 Cabinet Dimensions.....                            | 27        |
| 2.3.4 Cabinet Internal Design.....                       | 28        |
| 2.3.5 Equipment Operation Switch Location Overview ..... | 29        |
| 2.3.6 Cable Entry .....                                  | 30        |
| 2.3.7 Air Conditioner Drain Outlet .....                 | 30        |
| <b>3. Product Components Introduction.....</b>           | <b>32</b> |
| <b>3.1 M77314-S.....</b>                                 | <b>32</b> |
| <b>3.2 HV-Box .....</b>                                  | <b>33</b> |
| <b>3.3 EMS、SCADA and Interface Definition .....</b>      | <b>35</b> |
| <b>3.4 PCS .....</b>                                     | <b>39</b> |
| <b>4. Installation .....</b>                             | <b>41</b> |
| <b>4.1 Installation Location .....</b>                   | <b>41</b> |
| <b>4.2 Cabinet Fixing.....</b>                           | <b>43</b> |
| 4.2.1 Packing List.....                                  | 43        |
| 4.2.2 Cabinet Installation .....                         | 44        |
| <b>4.3 Electrical Connection of System Cabinet .....</b> | <b>48</b> |
| 4.3.1 Safety Precautions.....                            | 48        |
| 4.3.2 Cabinet Grounding Installation .....               | 48        |
| 4.3.3 Antenna Mounting.....                              | 49        |
| 4.3.4 Remove Incoming-Port Cover .....                   | 50        |
| 4.3.5 Load Connection.....                               | 50        |

## Contents

---

|                                                         |           |
|---------------------------------------------------------|-----------|
| 4.3.6 Grid Connection .....                             | 52        |
| 4.3.7 Diesel Generator Side Connection .....            | 53        |
| 4.3.8 Meter and CT Connection.....                      | 55        |
| 4.3.9 PV Connection .....                               | 58        |
| 4.3.10 Network Connection .....                         | 60        |
| 4.3.11 Expansion Cabinet Connection (Optional).....     | 61        |
| <b>5. Startup and Operation.....</b>                    | <b>65</b> |
| <b>6. Technical Contact.....</b>                        | <b>66</b> |
| <b>7. Attachment.....</b>                               | <b>67</b> |
| <b>7.1 System Installation of a Torque Wrench .....</b> | <b>67</b> |
| <b>7.2 System Normal Voltage Range Table.....</b>       | <b>68</b> |

## 1. Safety Instructions

### Statement

This manual contains important information about the product operation. It is imperative to thoroughly read and understand its contents before initiating any operational procedures.

Please keep this manual for future reference during installation, operation, and maintenance.

Please strictly follow the instructions outlined in this manual during installation, operation, and maintenance to prevent product damage, personal injury, and property loss.

In the case of incomplete system, be sure to shut down the entire system (including the battery and energy storage inverter) before installation personnel leave the site.

In the event of a system failure during normal operation, consult the troubleshooting table provided in this manual for elimination. If the issue persists, contact an AlphaESS engineer for assistance in a timely manner. Be sure to shut down the system (including the battery and energy storage inverter) before the AlphaESS engineer replies.

To ensure optimal reliability and compliance with warranty requirements, energy storage systems must be installed, operated, and maintained under the instructions specified in this manual. The company disclaims any liability for violations of general safety operation requirements or safety standards related to the design, production, and use of the products. Any product damage resulting from such violations is not covered by the warranty.

### 1.1 Operator Requirements

- Operators must hold a professional qualification certificate from AlphaESS or an authorized entity by AlphaESS.
- Operators must be familiar with the product, including its components and operating principles.

## Safety Instructions

---

- Operators must be well-versed in the product manual and strictly follow the instructions for installation, operation, and maintenance.
- Operators should ensure that at least two personnel are present during any product-related work.
- Do not perform maintenance work before the product has been shut down.
- After the system has officially started operation or maintenance has been completed, the key must be removed.

### 1.2 Personal Safety

- Install clear signage at PV, battery, PCS, distribution box, and other locations to prevent accidental closing of switches that could cause accidents.
- Erect warning signs or establish safety warning zones in the operating area.
- When performing electrical connections, commissioning, or product maintenance on the system, use a multimeter to conduct electrical measurements to ensure electrical parameters meet requirements. Please use and connect the measuring instruments correctly to ensure personnel safety.
- High voltage is present in the system; accidental contact can result in fatal electric shock hazards, so proper protective measures must be taken when performing live testing.
- Ensure that the system's connections and operation comply with relevant regulations to prevent arcing or electrocution accidents.

#### CAUTION

**The following installation tools and protective equipment are required during installation, operation, and maintenance.**

The following table describes the installation tools.

## Safety Instructions

| No. | Name                        | Model Specifications (Accuracy) | Unit | Quantity |
|-----|-----------------------------|---------------------------------|------|----------|
| 1   | Multimeter                  | /                               | pcs  | 1        |
| 2   | Megohmmeter                 | /                               | pcs  | 1        |
| 3   | Diagonal Cutting Pliers     | /                               | pcs  | 1        |
| 4   | PH2.5 Phillips Screwdriver  | PH2.5x110mm                     | pcs  | 1        |
| 5   | Socket Set                  | /                               | pcs  | 1        |
| 6   | PH2 Phillips Screwdriver    | PH2x200mm                       | pcs  | 1        |
| 7   | Torque Wrench               | /                               | pcs  | 1        |
| 8   | Wire Stripper               | /                               | pcs  | 1        |
| 9   | Network Cable Crimping Tool | /                               | pcs  | 1        |
| 10  | Crimping Tool               | /                               | pcs  | 1        |
| 11  | Measuring Tape              | /                               | pcs  | 1        |
| 12  | Impact Drill                | /                               | pcs  | 1        |

The protective equipments are given in the table below.

| No. | Name         | No. | Name           |
|-----|--------------|-----|----------------|
| 1   | Safety shoes | 4   | Safety goggles |

## Safety Instructions

|   |               |   |           |
|---|---------------|---|-----------|
| 2 | Safety helmet | 5 | Dust mask |
| 3 | Safety gloves |   |           |

### DANGER

**All products must be powered off and maintained in strict accordance with the related requirements specified in this manual.**

## 1.3 Electrical Safety

### 1.3.1 Grounding Requirements

1. Equipment grounding impedances should meet local electrical standards.
2. Install the protective ground cable first when installing the product, and remove it last when dismantling.
3. The system should be permanently grounded. Before operating the system, verify that all electrical connections are secure and that the system is reliably grounded.
4. Never operate the equipment without the grounding conductor installed.
5. Do not damage or impair the grounding conductor.

### DANGER

**Installation is forbidden until grounding is properly completed.**

### 1.3.2 Cabling Requirements

1. Cable selection, installation and routing shall comply with local codes and standards.
2. Power cables shall be free of kinks or twists during laying. If the length is insufficient, replace the entire cable—joints or splices are not permitted.
3. Protective measures must be applied when cables pass through conduits or entry holes to prevent damage from sharp edges or burrs.

## **Safety Instructions**

---

4. Cables used in high-temperature environments may suffer from insulation aging or damage. Maintain a minimum clearance of 30 mm between cables and any heat-emitting component or heat-source zone.
5. Cables of the same category shall be bundled together; different categories shall be separated by at least 30 mm and shall not cross or intertwine.
6. All cables shall be securely connected, adequately insulated, and of the appropriate specifications.
7. Buried cables shall be firmly secured with cable supports and clamps. Cables within the backfill zone shall be installed in a manner that prevents mechanical stress or deformation during backfilling.
8. At low temperatures impact or vibration can embrittle the plastic sheath and cause cracking. The following requirements apply:
  - Cables shall be installed only when the ambient temperature is above 0 °C and shall be handled gently, especially in cold environments.
  - If cables have been stored below 0 °C, they shall be conditioned at room temperature for at least 24 h before installation.

## **1.4 Mechanical Safety**

### **1.4.1 Transportation Safety**

1. When moving large products with their transport packaging unremoved, use a forklift to lift the cabinet from the bottom before moving it.
2. When using a forklift for handling, the forks must be positioned at the middle to prevent tipping. Before moving, secure the equipment to the forklift with ropes; during movement, a dedicated person must supervise.
3. The cabinet's tilt angle must comply with the requirements shown in the diagram: with packaging, tilt angle  $\alpha \leq 15^\circ$ ; after removing the packaging, tilt angle  $\alpha \leq 10^\circ$ . Refer to Figure 1-1:

## Safety Instructions

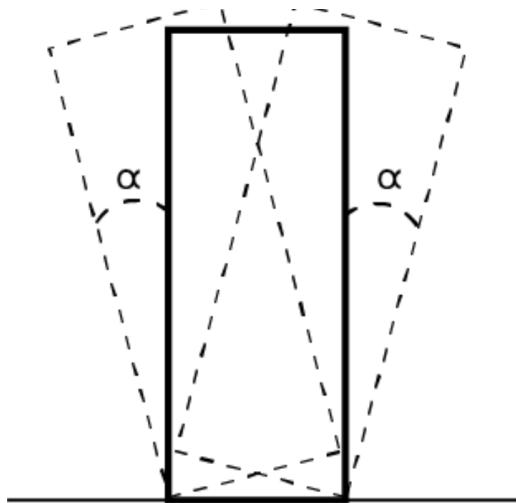



Figure 1-1

### 1.4.2 Hoisting Safety

1. All personnel engaged in hoisting operations must have received appropriate training and hold valid certification before performing any lifting work.
2. The foundation or ground surface at the hoisting site must meet the load-bearing requirements of the crane.
3. The hoisting area shall be barricaded and posted with temporary warning signs.
4. Entry beneath the boom or load is prohibited during hoisting.
5. Snagging or dragging slings and wire ropes is prohibited; striking slings with hard objects is also prohibited.
6. The included angle between any two slings shall not exceed 90°. Refer to Figure 1-2:

## Safety Instructions

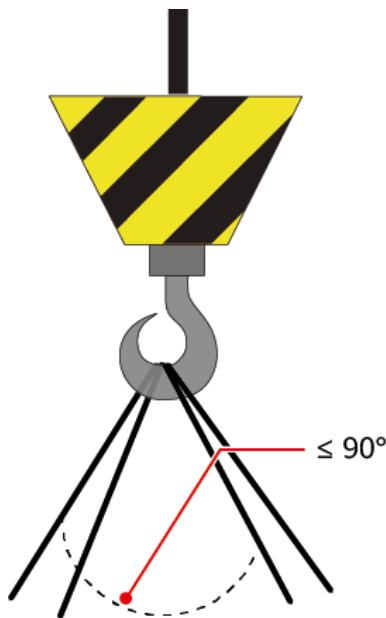



Figure 1-2

7. The crane hook centerline must be kept plumb (vertically aligned) with the cabinet's lifting point/center of gravity at all times. Side loading of the hook is strictly prohibited.
8. During hoisting, the cabinet's horizontal tilt angle (relative to level) shall be no greater than 5°.
9. The hoisting acceleration shall be  $\leq 0.5$  g, and the lifting process shall be carried out smoothly at a constant speed, avoiding sudden starts, stops, or impacts.
10. The angle between the sling and the horizontal plane of the cabinet top shall be  $\geq 60^\circ$  . (Equivalently, the sling angle relative to the vertical shall be  $\leq 30^\circ$  .)

### 1.4.3 Working-at-Heights Safety

1. When performing elevated work that may involve electrical hazards, use a wooden ladder or an insulated ladder.
2. Platform ladders with guardrails shall be used wherever practicable; straight ladders are prohibited.

## Safety Instructions

---

3. Before using a ladder, confirm that it is free from damage and that its load-bearing capacity meets the requirements. Overload is prohibited.
4. Ladders must be placed on a stable surface, and during operation, a second person shall hold the ladder securely.
5. When climbing a ladder, maintain body stability and ensure that the center of gravity does not extend beyond the ladder's side rails, thereby reducing the risk of falls and ensuring safety.
6. When using an A-frame ladder, the spreader/locking rope must be firmly secured.

### **1.4.4 Aerial Safety**

1. Work carried out at a height of 2 m or more above ground level is classified as work at height and such operations must be supervised by a designated safety monitor.
2. Personnel shall be trained and certified before being assigned to work at height.
3. An exclusion zone shall be established and clearly signed at every work-at-height site; unauthorized entry is prohibited.

## **1.5 Environmental Requirements**

### **1.5.1 Site Selection Requirements**

Do not select the sites that are not recommended by industry standards and regulations, including but not limited to the following areas:

- Areas with sources of strong vibration, loud noises, and strong electromagnetic interference
- Areas with dust, oil fumes, harmful gases, corrosive gases, etc.
- Areas with corrosive, flammable, and explosive materials
- Areas with existing underground facilities

## Safety Instructions

---

- Areas with adverse geological conditions such as rubbery soil and soft soil layer, or prone to waterlogging and land subsidence
- Under a reservoir, water landscape, and water room
- Areas prone to earthquakes and with seismic fortification intensity higher than 9
- Areas prone to debris flow, landslide, quicksand, karst caves, and other direct hazards
- Areas within the mining land subsidence (dislocation) zone
- Areas within the scope of blasting hazard
- Areas prone to flood due to a dam or levee failure
- Protection areas for important water supply sources
- Protection areas for historic relics
- Populated areas, high-rise buildings, and underground buildings
- Intersections and busy roads of urban main roads



**The ESS site selection and fire safety must comply with local laws and regulations. Due to limited ventilation and drainage, indoor installation of the system cabinet is not recommended.**

The requirements for selecting an outdoor site are as follows:

1. There must be no combustible materials within 3 m of the ESS or the site to prevent fire from spreading.
2. You are advised not to add any overhead structure above the ESS. If an overhead structure is necessary in special scenarios, the following conditions must be met:
  - The distance between the overhead structure and the top of the ESS shall be greater than 3 m.
  - The overhead structure shall be non-combustible.

## **Safety Instructions**

---

3. The horizontal level of the installation site shall be above the highest water level of that area in history and at least 300 mm above the ground. The site must not be located in a low-lying land.
4. The ESS and the site must be in an environment free from explosion risks.
5. Transportation to the site shall be convenient and fire suppression facilities shall be reliable.
6. When installing, commissioning, and operating the ESS, ensure that at least two gas fire extinguishers, such as heptafluoropropane, perfluorohexanone, or carbon dioxide fire extinguishers, are provided near each unit to ensure fire safety.
7. The ESS shall be installed more than 30 m away from the third-party wireless communication facilities.
8. The site shall be in a well-ventilated place.
9. The safety distances between the ESS and buildings shall comply with local fire protection regulations or standards. The ESS located outdoors must be at least 10 ft (3.048 m) away from lot lines, public ways, buildings, combustible materials, hazardous materials, high-piled stock, parking spaces, and other exposure hazards not associated with electrical grid infrastructure.
10. The distance between the ESS and residential buildings must be greater than or equal to 12 m, and the distance between the ESS and densely populated buildings such as schools and hospitals must be greater than 30.5 m. If the distance does not meet the requirement, fire walls shall be installed between the ESS and the buildings.
11. The ESS shall not be installed in salt-affected or polluted areas because this will cause corrosion.

The ESS shall be used in the following or better environments:

## Safety Instructions

---

- Outdoor environment more than 10km away from the coast.
- More than 5000 m away from heavy pollution sources such as smelters, coal mines, and thermal power plants.
- More than 3000 m away from medium pollution sources such as chemical, rubber, and electroplating industries.
- More than 2000 m away from light pollution sources such as packing houses, tanneries, boiler rooms, slaughterhouses, landfill sites, and sewage treatment plants.
- It is recommended that physical walls or fences be used for isolation and protection in the energy storage equipment area. The fences shall be equipped with a door lock and the recommended fence height is greater than 2.2 m.



**You are advised to select another site if the safety distance for a site cannot meet the requirements of relevant national standards.**

### 1.5.2 Foundation Requirements

1. The ESS must be installed on concrete or other non-combustible surfaces.
2. Ensure that the installation surface is horizontal, secure, flat, and has sufficient load-bearing capacity.
3. Subsidence or slope is not allowed.
4. The foundation shall sustain the total weight of the equipment.
5. If the load-bearing capacity of the foundation does not meet the requirement, a review is required.
6. The bottom of the excavated foundation must be compacted and flat.
7. After the foundation is excavated, prevent water from entering the foundation.
8. If water enters the foundation, excavate and refill the affected parts.
9. The levelness tolerance between the foundation and the contact surface of the cabinet must be less than or equal to 3 mm.

## Safety Instructions

---

10. The foundation must be above the highest water level of the local area in history and at least 300 mm above the ground.
11. Construct drainage facilities based on the local geological conditions and municipal drainage requirements to ensure that no water will accumulate at the equipment foundation.
12. The foundation construction must meet the local drainage requirements for the maximum historical rainfall.
13. The drained water must be disposed of in accordance with local laws and regulations.
14. Reserve trenches or cable inlets for the ESS during foundation construction.
15. The reserved holes on the foundation and the cable inlets at the bottom of the equipment shall be sealed.
16. The design specifications of the ESS foundation shall be reviewed based on the installation environment, ground bearing capacity, geological features, and seismic resistant requirements of the project site.

### 2. System Introduction

#### 2.1 Product Introduction

The STORION-H30/H50-G3 features a 30 kW or 50 kW PCS and M77314-S battery modules. An optional ATS cabinet enables dual-source automatic transfer. The system capacity ranges from 72.3 kWh to 120.5 kWh; the topology is shown below.

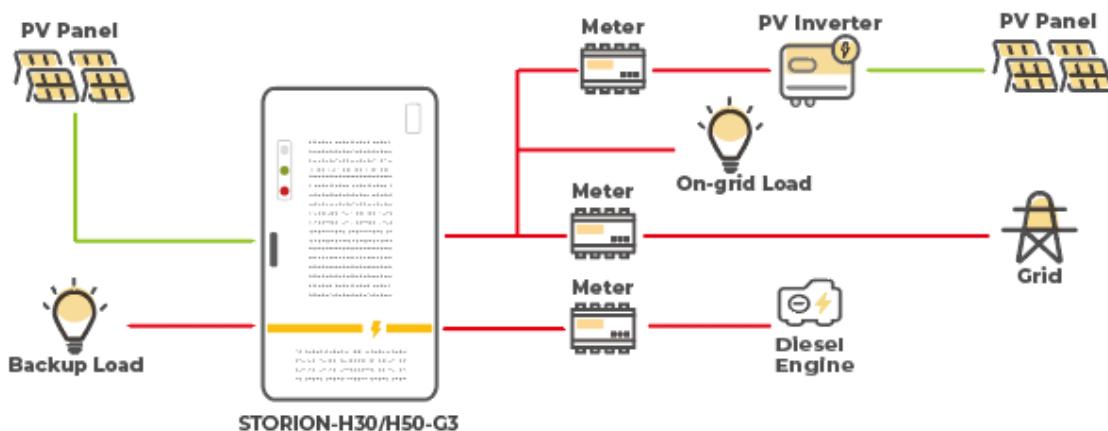



Figure 2-1

#### 2.2 Product Features

AlphaESS Lithium Iron Phosphate (LFP) batteries offer long cycle life and high reliability, meeting diverse energy-storage applications.

The highly modular design enables easy assembly, transport, and maintenance.

Real-time balancing maintains excellent cell-to-cell uniformity across all modules.

Its detachable, compact, and flexible chassis simplifies installation and testing for a wide range of field applications.

Advanced thermal management keeps the system within its optimal temperature range.

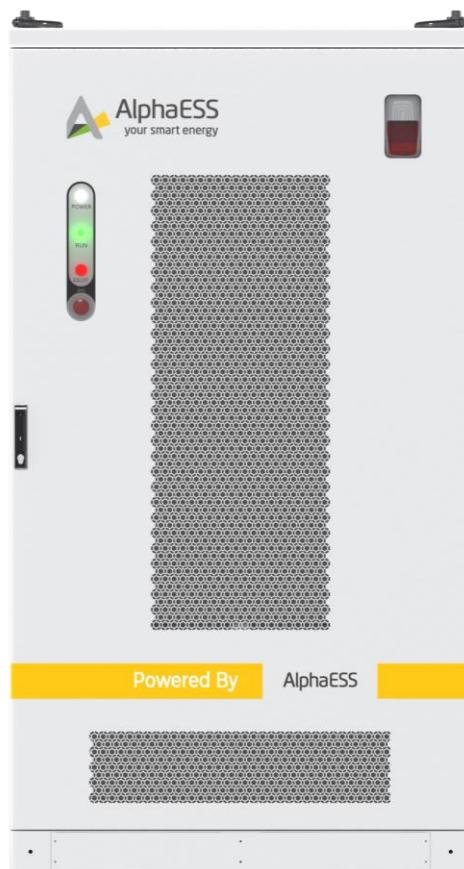
## System Introduction

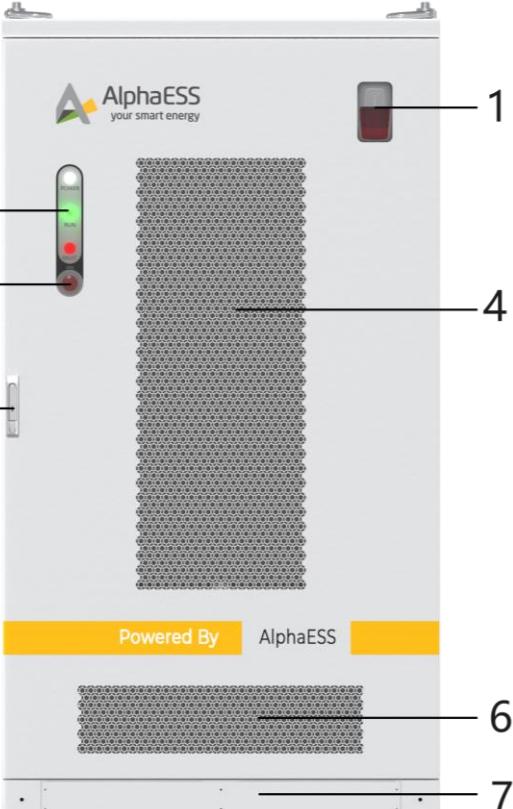
The system supports both local and remote monitoring and control. Seamless communication among the BMS, PCS, EMS, and supervisory system enables flexible grid dispatch.

### 2.3 Product Composition

#### 2.3.1 Appearance Introduction

The appearance of the STORION-H30/H50-G3 energy storage system is shown below:





Figure 2-2



**\*The above image is for reference only. Please refer to the actual received product!**

Product appearance description is given in the table below:

## System Introduction

| View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  <p>The image shows the front view of a rectangular system unit. On the left side, there is a vertical panel with three indicator lights: a green 'POWER' light, a yellow 'RUN' light, and a red 'FAULT' light. Above these lights is the 'AlphaESS your smart energy' logo. To the right of the indicator panel is a large, textured vertical panel labeled '4'. At the top right of the unit is a small rectangular slot labeled '1'. At the bottom right is a horizontal slot labeled '6'. At the very bottom is a horizontal slot labeled '7'. On the far left edge, there is a small vertical slot labeled '5'. On the far right edge, there is a small vertical slot labeled '2'. At the top center, there is a small circular button labeled '3'. The bottom of the unit features a yellow 'Powered By' label followed by the 'AlphaESS' logo.</p> | <p>Front View</p> <ol style="list-style-type: none"><li>1. Fire Alarm Indicator</li><li>2. Status Indicator</li><li>3. EPO Button</li><li>4. Air Conditioner</li><li>5. Door Lock</li><li>6. PCS Air Intake Vent</li><li>7. Bottom Protective Panel</li></ol> |



**\*The above image is for reference only. For more information, refer to the actual product received.**

### 2.3.2 Indicator Light Function Description

Three indicator lights—POWER, RUN and FAULT—are mounted on the upper part of the cabinet door to show the system operating status.

The indicator description is given in the table below:

| Name | Color | Description |
|------|-------|-------------|
|      |       |             |

## System Introduction

|       |       |                                                                                                                              |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------|
| POWER | White | Steady ON when the system is powered; OFF when power is lost.                                                                |
| RUN   | Green | Steady ON while the system is operating and delivering power; slow blink during off-grid operation; OFF if any fault occurs. |
| FAULT | Red   | Steady ON when a fault prevents normal operation; OFF at all other times.                                                    |

The status and descriptions of the LED indicator lights are listed in the following table.

| Name                         | Description                       |
|------------------------------|-----------------------------------|
| POWER ON, RUN ON, FAULT OFF  | System operating normally         |
| POWER ON, RUN OFF, FAULT ON  | FAULT ON indicates a system fault |
| POWER ON, RUN OFF, FAULT OFF | System is shut down               |

### 2.3.3 Cabinet Dimensions

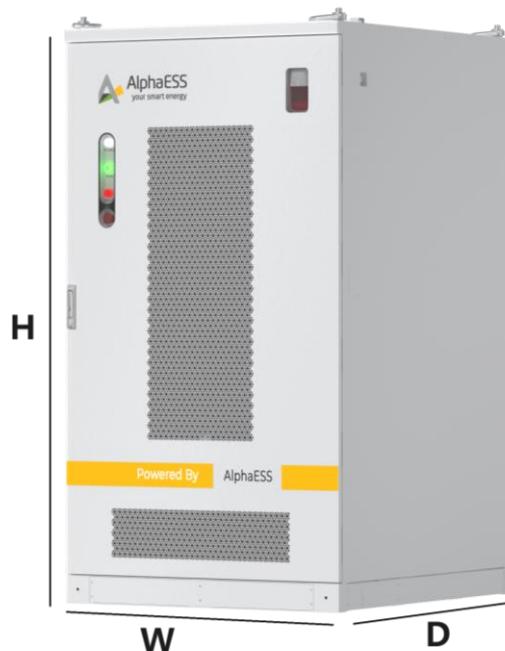



Figure 2-4

## System Introduction

Cabinet dimensions are given in the table below.

| Machine Type | STORION-H30/H50-G3 |
|--------------|--------------------|
| W (mm)       | 1120               |
| H (mm)       | 1300               |
| D (mm)       | 2095*              |

Note: Height includes lifting rings.

### 2.3.4 Cabinet Internal Design

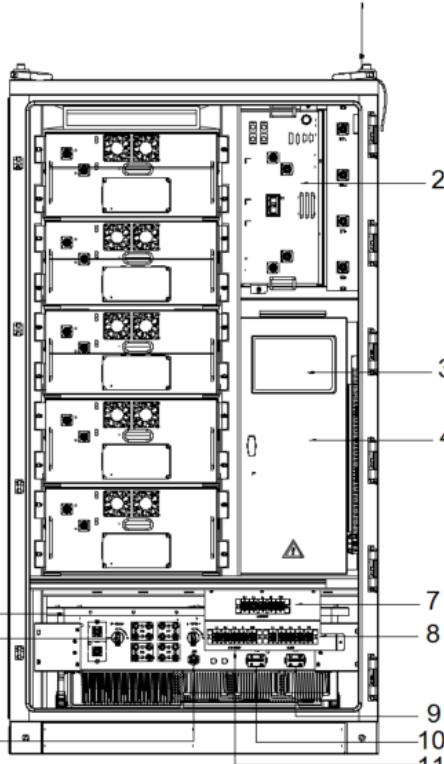

| View                                                                                                | Description                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>Internal view | <ul style="list-style-type: none"><li>1. PCS</li><li>2. HV Box</li><li>3. SCADA</li><li>4. Distribution Box</li><li>5. DC Circuit Breaker</li><li>6. COM1 port</li><li>7. BACK-UP output terminal</li><li>8. Genset output terminal</li><li>9. COM3 port(reserve)</li><li>10. COM2 port</li><li>11. On-grid output terminal</li></ul> |

Figure 2-5

### 2.3.5 Equipment Operation Switch Location Overview

In the STORION-H30/H50-G3 system, the following switches are included: the auxiliary power switch of the HV box, the molded case circuit breaker (MCCB) of the HV box, the auxiliary power switch of the cabinet, and the PV switches of the PCS.

The operating positions of each switch within the system are shown in the figure below.

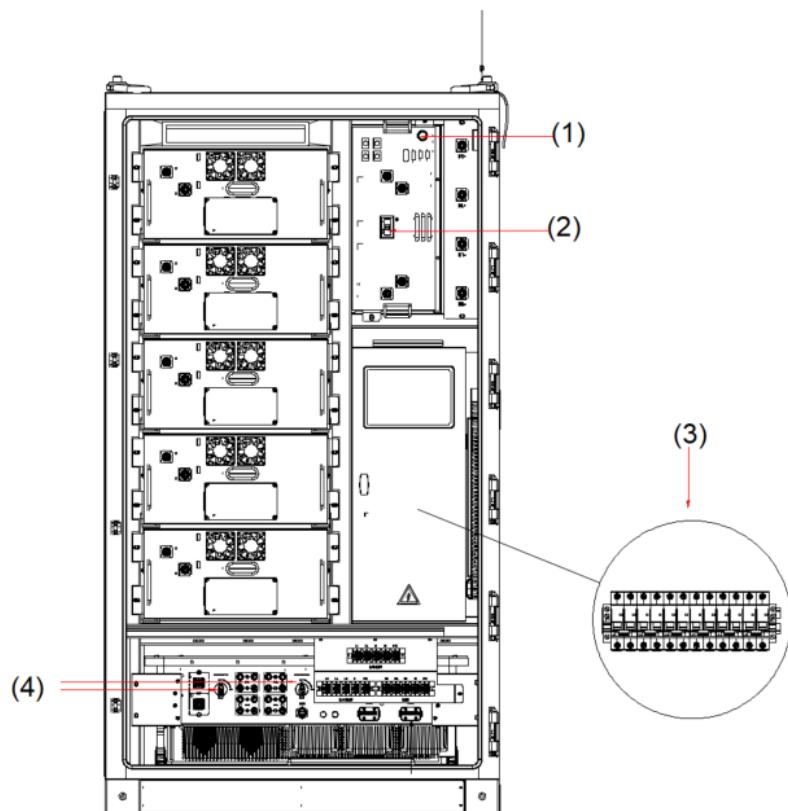



Figure 2-6

The functions of these switches in the system are described in the table below:

| Number | Equipment Switch              | Description                          |
|--------|-------------------------------|--------------------------------------|
| 1      | HV-BOX Auxiliary Power Switch | Control AC power supply to HV box    |
| 2      | HV-BOX MCCB                   | Control battery DC system            |
| 3      | AC Auxiliary Power Switch     | Control AC auxiliary supply incoming |

## System Introduction

|   |                         |                                     |
|---|-------------------------|-------------------------------------|
| 4 | PV switches of the PCS. | Control PV switch strings 1-2 / 3-4 |
|---|-------------------------|-------------------------------------|

### 2.3.6 Cable Entry

For convenient on-site cable connections, all cables between internal devices in the system cabinet are pre-connected before delivery. Communication cables connecting the system cabinet to external devices can enter through the cable entry located at the bottom left or bottom right of the system cabinet. The system cable entry diagram is shown below:

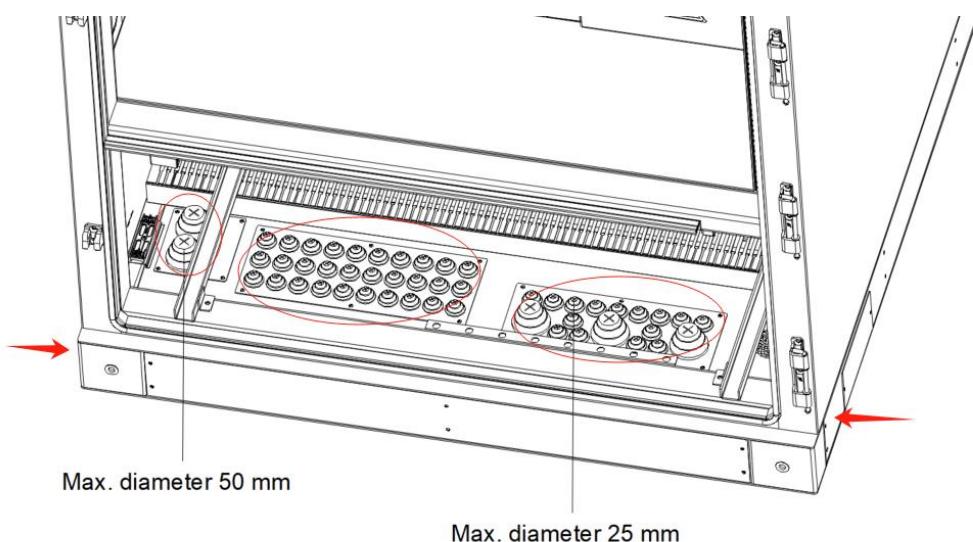
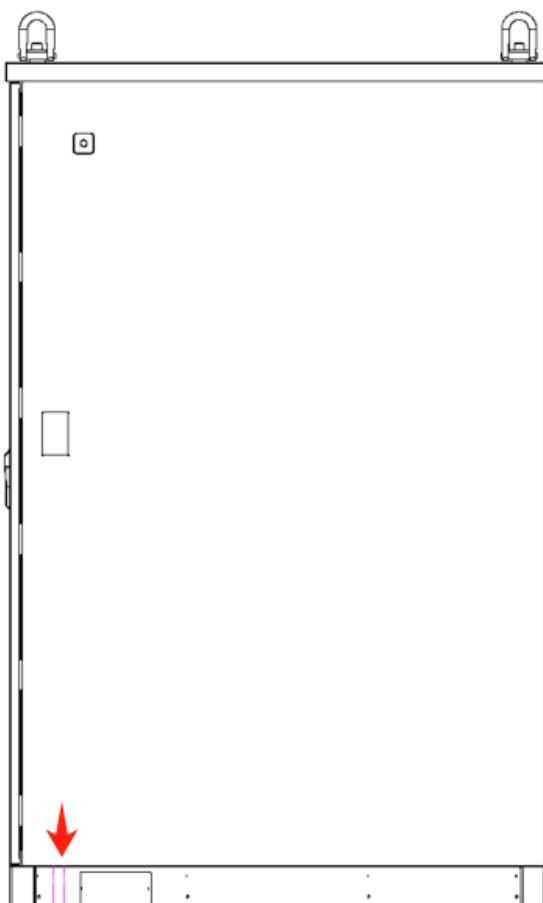



Figure 2-7


Dimension requirements are given in the table below.

| Number | Description         | Dimensions          |
|--------|---------------------|---------------------|
| 1      | System Cable Outlet | Max. diameter 25 mm |
| 2      | System Cable Outlet | Max. diameter 50 mm |

### 2.3.7 Air Conditioner Drain Outlet

The air conditioner drain outlet is located on the right side of the cabinet. Refer to Figure 2-8:

## System Introduction



Right view

Figure 2-8

### 3. Product Components Introduction

#### 3.1 M77314-S

The battery is shown as below:

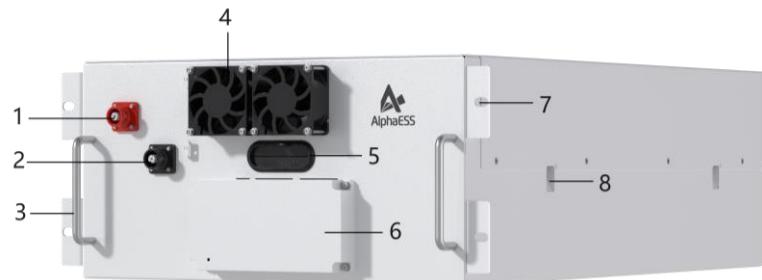



Figure 3-1

Appearance introduction is shown in the table below:

| Number | Description          | Number | Description             |
|--------|----------------------|--------|-------------------------|
| 1      | Battery Negative (-) | 5      | Sample Cable Entry Port |
| 2      | Battery Positive (+) | 6      | BLMU                    |
| 3      | Handle               | 7      | Mounting Hole           |
| 4      | Fan                  | 8      | Lifting Hole            |

Battery technical parameters are given in the table below.

| Number | Description           | Technical parameter   |
|--------|-----------------------|-----------------------|
| 1      | Model                 | M77314-S              |
| 2      | Battery Type          | LFP(LiFePO4)          |
| 3      | Cell Manufacturer     | CALB                  |
| 4      | Weight                | 168 kg                |
| 5      | Dimensions [W×H×D mm] | 526mm × 814mm × 250mm |

|    |                             |                 |
|----|-----------------------------|-----------------|
| 6  | IP Protection               | IP20            |
| 7  | Fire-Fighting System        | Aerosol         |
| 8  | Energy Capacity             | 24.1 kWh        |
| 9  | Usable Capacity             | 22.9 kWh        |
| 10 | Nominal Voltage             | 76.8 V          |
| 11 | Operating Voltage Range     | 64.8 V – 84V    |
| 12 | Cycle Life                  | ≥8000@0.5C 25°C |
| 13 | Max. Charging Current       | 157 A           |
| 14 | Max. Discharging Current    | 157 A           |
| 15 | Operating Temperature Range | -20 °C~50 °C    |
| 16 | Relative Humidity           | 15%~85%         |

### 3.2 HV-Box

The HV-Box diagram is shown as below:

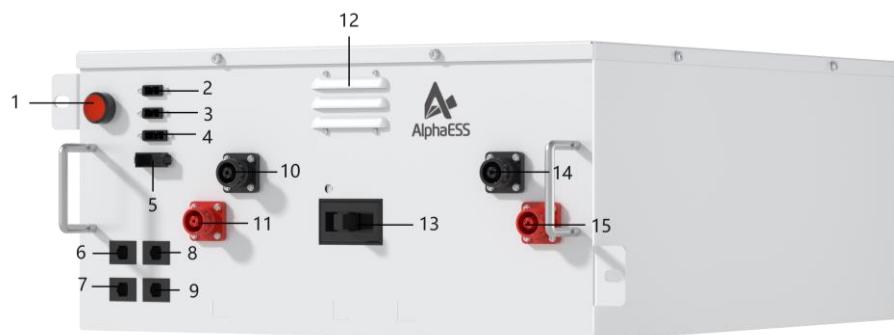



Figure 3-2

HV-BOX appearance introduction is shown in the table below:

| Number | Description                     | Number | Description                               |
|--------|---------------------------------|--------|-------------------------------------------|
| 1      | Auxiliary Power Switch          | 9      | BCMU2                                     |
| 2      | AC Power Supply                 | 10     | Power Cable Positive (Connect to Battery) |
| 3      | AC Power Supply                 | 11     | Power Cable Negative (Connect to Battery) |
| 4      | DC Power Supply                 | 12     | Vent                                      |
| 5      | BLMU to BCMU Communication Port | 13     | Circuit Breaker Switch                    |
| 6      | TCP Communication Port          | 14     | Power Cable Positive (Connect to PCS)     |
| 7      | RS485 Communication Port        | 15     | Power Cable Negative (Connect to PCS)     |
| 8      | BCMU1                           |        |                                           |

HV-BOX technical parameters are shown in the table below:

| Technical Parameter      |                                              | Technical Specification  |
|--------------------------|----------------------------------------------|--------------------------|
| DC Side Parameters       | Voltage (V)                                  | Max. 1000                |
|                          | Current (A)                                  | Max. 250                 |
| Auxiliary Power Supply   | Voltage Range (V)                            | 24                       |
|                          | Power Supply (W)                             | Max.150                  |
| Mechanical Specification | Enclosure Material                           | Galvanized Steel Sheet   |
|                          | Dimensions (L×W×H, mm)                       | 526*670*250 (±2)         |
|                          | Weight (kg)                                  | ≤30                      |
|                          | Cooling Method                               | Air Cooling              |
|                          | Storage Temperature (°C)                     | -20~70                   |
|                          | Operating Temperature Range (°C)             | -30~50                   |
|                          | Recommended Operating Temperature Range (°C) | 23±5                     |
|                          | Operating Humidity Range                     | ≤85% RH (non-condensing) |

### 3.3 EMS、SCADA and Interface Definition

The EMS module is shown below:

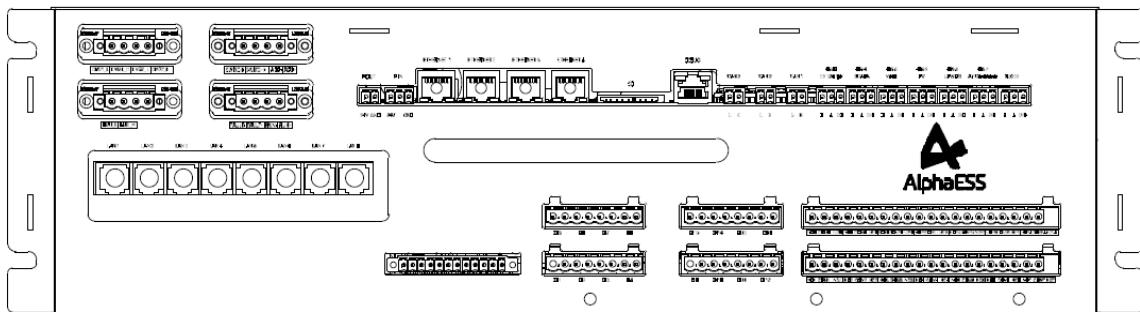



Figure 3-3

The SCADA three-view diagram is shown below:

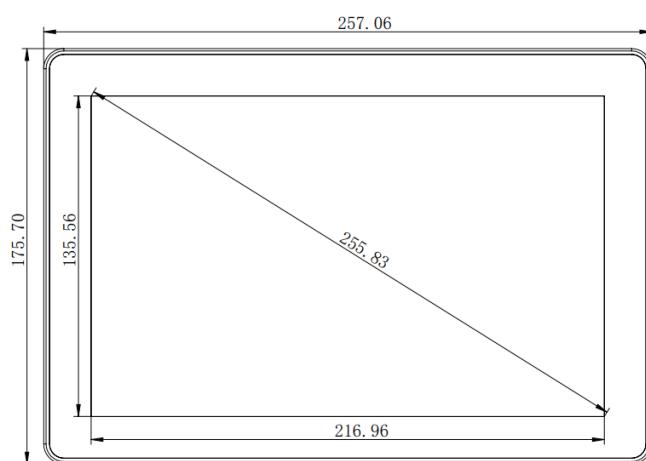



Figure 3-4

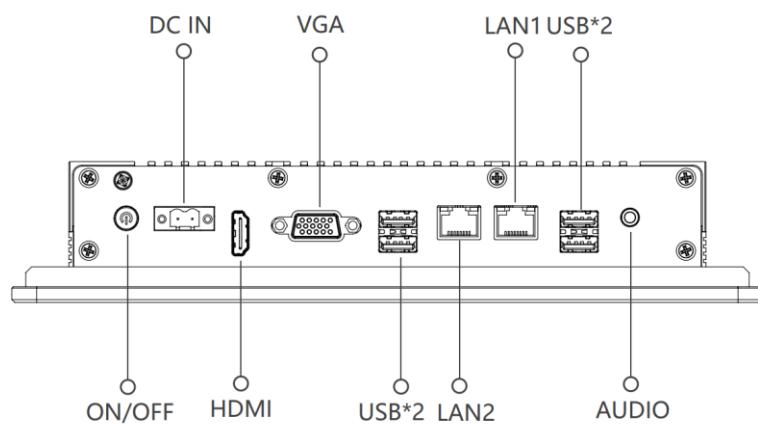



Figure 3-5

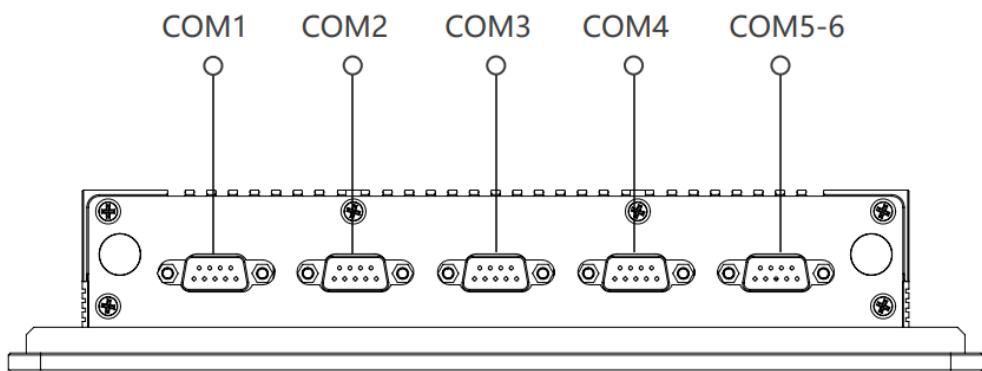



Figure 3-6

Interface definitions are shown in the table below:

| Number | Interface Name | Interface Definition                    | Remarks                                  |
|--------|----------------|-----------------------------------------|------------------------------------------|
| EMS    |                |                                         |                                          |
| 1      | DI1            | Emergency Stop Signal                   | Remote Signal (External Normally Closed) |
| 2      | DI3            | Smoke Sensor Feedback                   | Remote Signal (External Normally Open)   |
| 3      | DI4            | Temperature Sensor Feedback             | Remote Signal (External Normally Open)   |
| 4      | DI5            | Fire Protection Activation              | Remote Signal (External Normally Open)   |
| 5      | DI6            | Dual Power Supply - Main Power Signal   | Remote Signal (External Normally Open)   |
| 6      | DI7            | Dual Power Supply - Backup Power Signal | Remote Signal (External Normally Open)   |
| 7      | DI9            | Water Ingression Feedback               | Remote Signal (External Normally Open)   |
| 8      | DI10           | Access Control Feedback                 | Remote Signal (External Normally Open)   |
| 9      | DI11           | RRCR_K1                                 | Remote Signal (External Normally Open)   |
| 10     | DI12           | RRCR_K2                                 | Remote Signal (External Normally Open)   |
| 11     | DI13           | RRCR_K3                                 | Remote Signal (External Normally Open)   |
| 12     | DI14           | RRCR_K4                                 | Remote Signal (External Normally Open)   |

**Product****Components**

|    |               |                                 |                                                                                                       |
|----|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------|
| 13 | DI15          | Limit ESS Charging Power        | Remote Signal (External Normally Open)                                                                |
| 14 | DI16          | Do Not Limit ESS Charging Power | Remote Signal (External Normally Open)                                                                |
| 15 | DO2           | Generator Start/Stop            | Normally Open Contact                                                                                 |
| 16 | DO3           | Request PCS Shutdown            | Normally Open Contact                                                                                 |
| 17 | DO5           | Shed Non-Critical Loads         | Normally-open contact (wet contact)                                                                   |
| 18 | DO6           | Shed Critical Loads             | Normally-open contact (wet contact)                                                                   |
| 19 | DO7           | Audible and Visual Alarm        | Normally Open Contact                                                                                 |
| 20 | SYS_RUN_LED   | Run LED                         | Output 24V active switch signal                                                                       |
| 21 | SYS_FAULT_LED | Fault LED                       | Output 24V active switch signal                                                                       |
| 22 | 24V_IN        | Input Power                     | EMS Power Supply                                                                                      |
| 23 | LAN1          | SCADA_FS                        | Connected to SCADA's LAN 1 via a network switch.<br>Default IP address for EMS LAN 1: 192.168.200.101 |
| 24 | LAN2          | Energy Storage Converter        | Connected to the PCS via a network switch.<br>Default IP address for LAN 2: 192.168.200.102           |
| 25 | LAN3          | 4G Router                       | Default IP address for LAN 3: 192.168.200.103                                                         |
| 26 | LAN4          | Follower Cabinet Communication  |                                                                                                       |
| 27 | SD Card       | SD Card                         |                                                                                                       |
| 28 | CAN1          | CAN Communication               | CAN communication between EMS and BAMU                                                                |
| 29 | RS485-4       | HMI/SCADA_FS                    | Connect to COM1 of SCADA_FS                                                                           |
| 30 | RS485-5       | Energy Meter                    |                                                                                                       |
| 31 | RS485-7       | Air Conditioner                 |                                                                                                       |

**Product****Components**

|       |        |                   |                                           |
|-------|--------|-------------------|-------------------------------------------|
| 32    | SWITCH | Input Power       | Switch 24V DC power supply                |
| 33    | ADD    | ID Allocation     | ID communication between BCMU and BAMU    |
| 34    | BMU    | CAN Communication | CAN communication between BCMU and BAMU   |
| SCADA |        |                   |                                           |
| 1     | INPUT  | Power Input       |                                           |
| 2     | LAN1   | EMS               | Connected to EMS LAN1 via network switch. |
| 3     | COM1   | EMS               | Connected to EMS RS485                    |

EMS and SCADA display screen technical parameters are shown in the table below:

| Number | Description        | Technical Parameter                                 |
|--------|--------------------|-----------------------------------------------------|
| EMS    |                    |                                                     |
| 1      | Dimensions (L×W×H) | 490.6×323×161mm                                     |
| 2      | Communication      | RS-485×4, Ethernet 10Mbps×3                         |
| 3      | Operating Voltage  | 24V                                                 |
| 4      | Power Consumption  | <10W                                                |
| SCADA  |                    |                                                     |
| 5      | Dimensions (L×W×H) | 257×176×48mm                                        |
| 6      | Communication      | 4*RS-232, 2*RS-232/RS485                            |
| 7      | Data Storage       | Standalone: 3 years<br>Parallel operation: 180 days |
| 8      | Power Consumption  | <19W                                                |
| 9      | Resolution         | 1280×800                                            |
| 10     | Input Voltage      | 24V                                                 |

### 3.4 PCS

The external view of the PCS is shown in Figure 3-7:



Figure 3-7

Inverter technical parameters are shown in the table below:

| Item         |                                       | 30kW    | 50kW    |
|--------------|---------------------------------------|---------|---------|
| PV input     | Start-up VoltageMax. DC Input(V)      | 210     | 210     |
|              | Max. DC Input Voltage(V)              | 1000    | 1000    |
|              | Rated DC input Voltage(V)             | 620     | 620     |
|              | Operating Voltage Range(V)            | 200-950 | 200-950 |
|              | MPPT Voltage Range(V)                 | 200-850 | 330-850 |
|              | No. of MPP Trackers                   | 4       | 4       |
|              | No. of PV inputs per MPPT             | 2       | 2       |
|              | Max. PV input Current(A)              | 40×4    | 40×4    |
|              | Max. Short-circuit Current(A)         | 50×4    | 50×4    |
| Battery Side | Battery Voltage Range(V)              | 150-840 |         |
|              | Maximum Charging/Discharge Current(A) | 150/150 |         |

**Product****Components**

|                       |                            |                                      |    |
|-----------------------|----------------------------|--------------------------------------|----|
| On-grid               | Rated Output Power         | 30                                   | 50 |
|                       | Max. Output Power          | 30                                   | 50 |
|                       | Rated Output Voltage       | 3/N/PE, 220/380V; 230/400V; 240/415V |    |
|                       | Rated Output Frequency(Hz) | 50/60                                |    |
|                       | Power Factor               | 0.8 leading ...0.8 lagging           |    |
| Dimensions (W×H×D mm) |                            | 909×735×305                          |    |
| Weight(kg)            |                            | 89                                   |    |
| Ingress Protection    |                            | IP65                                 |    |

### 4. Installation

#### 4.1 Installation Location



**Install the outdoor energy-storage cabinet in accordance with local fire-regulation clearances—e.g., from escape routes, doors, windows and air-inlet vents.**

When installing the STORION-H30/H50-G3, maintain adequate clearance on all sides to permit ventilation, heat dissipation, installation and maintenance; see the dimensional diagram below.

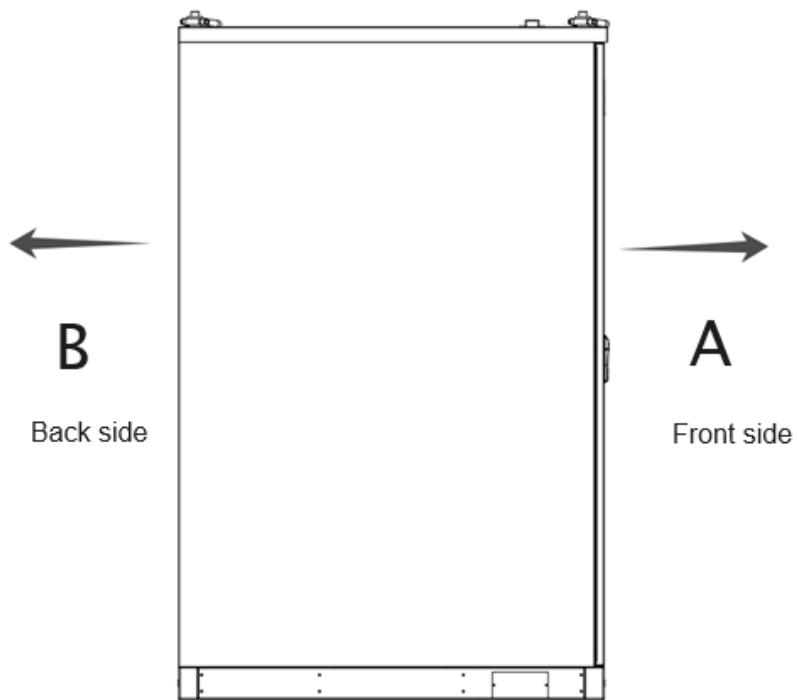



Figure 4-1

$A \geq 2000$  mm: ensures the cabinet front door can open fully, providing adequate ventilation and sufficient space for operation and maintenance.

$B \geq 500$  mm: ensures sufficient ventilation clearance at the rear of the cabinet.

A minimum side-to-wall clearance of 300 mm is required to allow the cabinet door to open 120° for easy maintenance and commissioning. Refer to Figure 4-2.

## Installation

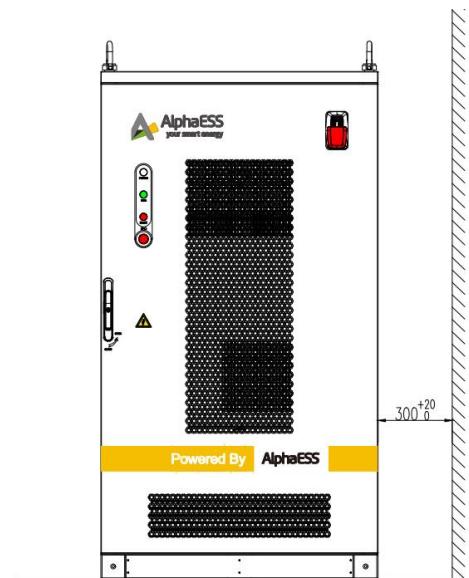



Figure 4-2

When an expansion cabinet is installed, the gap between the expansion cabinet and the main cabinet shall be less than 100 mm. Refer to Figure 4-3.

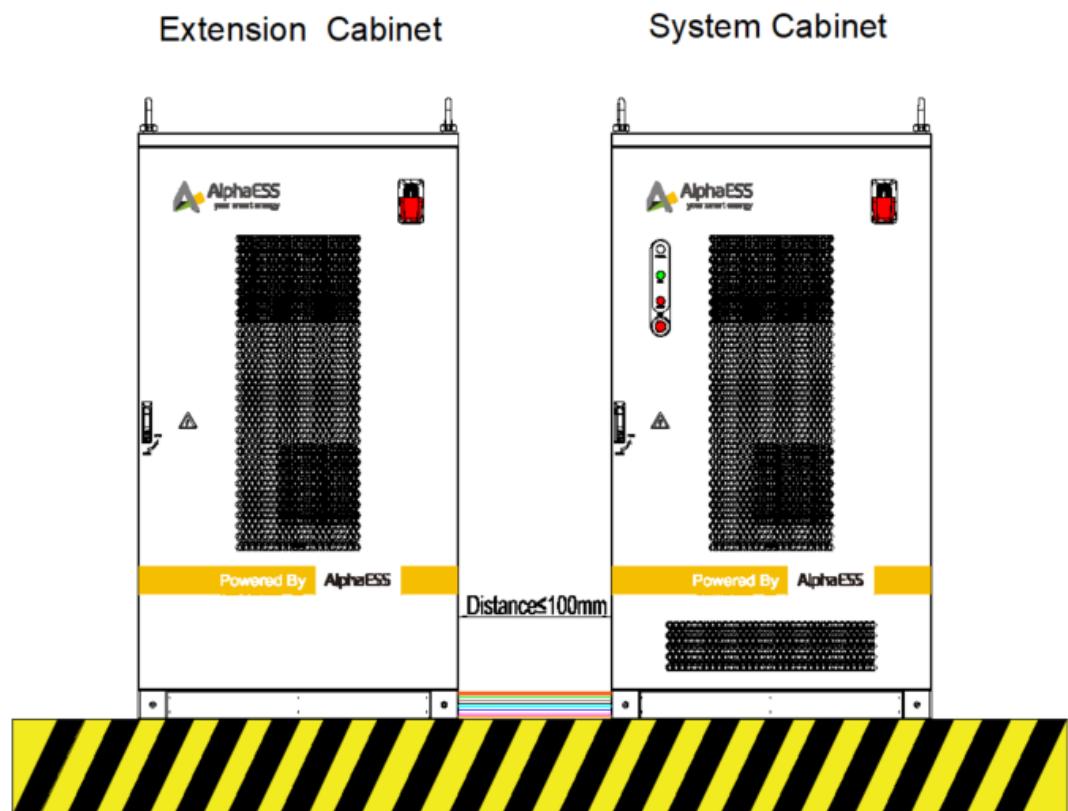



Figure 4-3

### 4.2 Cabinet Fixing



NOTE

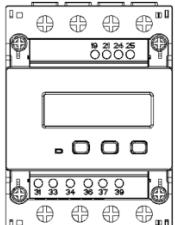
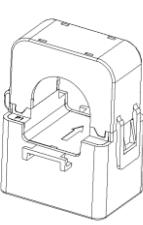
**Before opening the package, check the packaging for any visible signs of damage.**

**If damage is found, do not open the package; verify the system model and contact your dealer immediately.**

**After unpacking, check that all items are intact. If any visible damage is found on the exterior, contact your distributor immediately.**

#### 4.2.1 Packing List





CAUTION

**Please check the parts list before product installation. Do not randomly connect power or communication cables. Check the part number before cabling.**

The Packing list is shown in the table below:

|                     |             |                                                                        |                                                        |
|---------------------|-------------|------------------------------------------------------------------------|--------------------------------------------------------|
|                     |             |                                                                        |                                                        |
| PV terminal 8 pairs | Screwdriver | OT terminals(50kW):<br>KST TL35-8 X4<br>KST TL25-8 X8<br>KST TL16-8 X3 | OT terminals(30kW):<br>KST TL25-8 X4<br>KST TL16-8 X11 |
|                     |             |                                                                        |                                                        |

## Installation

|                                                                                   |                                                                                   |                                                   |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------|--|
| Battery Terminating resistor                                                      | HV BOX Terminating resistor                                                       | 10m communication cable<br>3m communication cable |  |
|  |  |                                                   |  |
| Meter                                                                             | CT×3                                                                              |                                                   |  |

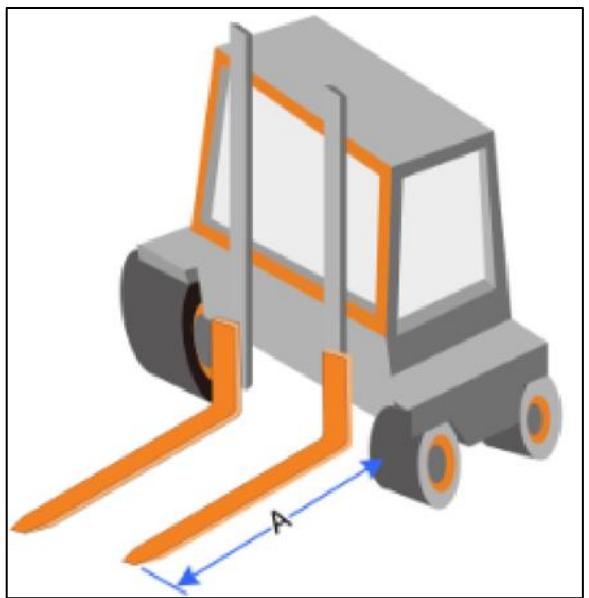
### 4.2.2 Cabinet Installation

#### 4.2.2.1 Transportation Conditions

All equipment of the STORION-H30/H50-G3 cabinet are pre-assembled and fixed within the cabinet before leaving the factory. The entire cabinet can be transported as a unit.

#### 4.2.2.2 Forklift Transportation

If the installation site is level, the cabinet may be moved with a forklift. STORION-H30/H50-G3 is fitted with dedicated fork pockets in the base—insert the forks from the front pockets only.


#### CAUTION

If forklift handling is used, the following requirements must be met:

## Installation

- The forklift shall have a rated capacity of at least 5 tonnes.
- The fork tines shall be no shorter than 1,300 mm.
- Lifting and lowering must be carried out slowly and smoothly.
- The cabinet may only be placed on a level, obstacle-free surface free of bumps or debris.
- Remove the external wooden crate before forklift transport.

See the forklift-handling diagram below.



$$A \geq 1300$$

### 4.2.2.3 Equipment Installation

After moving the STORION-H30/H50-G3 cabinet to the installation location using a forklift or other equipment, fix its base using M12 screws (to be supplied by the customer). The base diagram is shown below:

## Installation

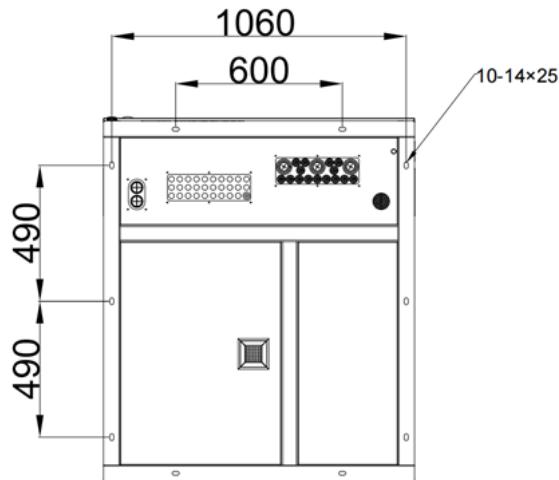



Figure 4-4

### ⚠ CAUTION

**Cable entry holes are located at the bottom of the STORION-H30/H50-G3 cabinet.**  
**Cables pass through the holes in the base into the cable tray.**

When the STORION-H30/H50-G3 cabinet needs to be fixed to channel steel,  $\Phi 12$  holes must be drilled into the steel, and screws should be used to secure the cabinet to the channel steel. The diagram for fixing to channel steel is shown below:

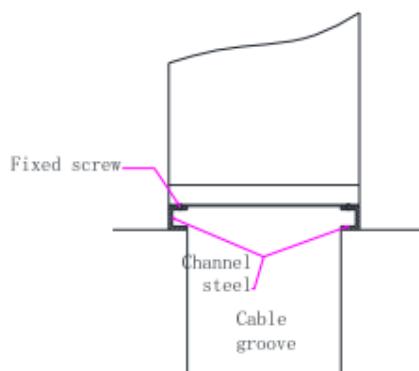



Figure 4-5

## Installation

When securing the STORION-H30/H50-G3 cabinet to a concrete floor, drill holes and anchor it with bolts. The foundation must be C30-grade (or higher) reinforced concrete, capable of bearing more than 2 tons. External cable entry should preferably be protected by metal conduits, and an air-conditioning drain must be pre-installed in the foundation. The diagram for fixing to a concrete floor is shown below:

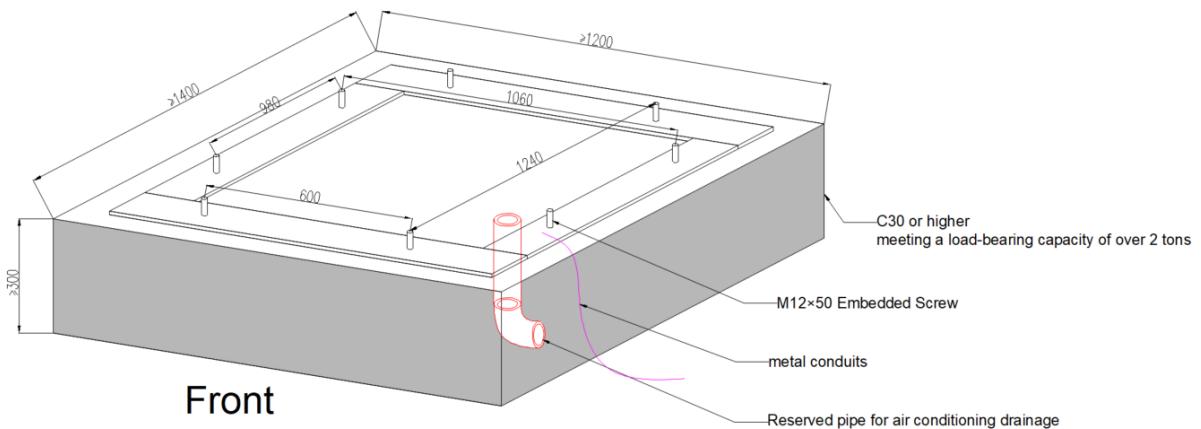



Figure 4-6

### ⚠ CAUTION

**The STORION-H30/H50-G3 system cabinet itself weighs at least 1.3 tons. It is recommended to make a foundation using cement or concrete according to local standard requirements for installing the outdoor cabinet.**

### 4.3 Electrical Connection of System Cabinet


#### 4.3.1 Safety Precautions

Before performing any electrical connections or other operations on the energy storage integrated system and related equipment, observe the following safety precautions.

- Disconnect all external connections to the energy storage integrated system, as well as connections to internal power supplies.
- Ensure that disconnection points cannot be accidentally re-energized.
- Use a multimeter to ensure the equipment is completely de-energized.
- Apply the required grounding.
- Cover nearby components that may remain energized with insulating cloth or material.

#### 4.3.2 Cabinet Grounding Installation

The bottom of the system cabinet is pre-equipped with four grounding points. Select the appropriate point based on the on-site installation conditions. The customer must prepare the grounding cable. Refer to Figure 4-7.



## Installation

Figure 4-7

Use an M10 socket to remove the nut from the grounding point at the bottom of the cabinet. Select a grounding cable with a cross-section of 35 mm<sup>2</sup> or larger, crimp an OT/DT/SC35-10 terminal to it, and connect the grounding cable to the cabinet's grounding point. Ensure the grounding point is securely installed with a torque value of 15 N·m.

### **WARNING**

**Ensure the STORION-H30/H50-G3 outdoor cabinet is reliably grounded. If not connected or loose, electric shock may occur. It is recommended to paint over the outside of the grounding terminal after installation for protection.**

### **CAUTION**

**Grounding resistance should be less than 4Ω.**

### **4.3.3 Antenna Mounting**

The antenna is pre-connected for wireless communication. After removing the wrapping film, place the antenna vertically into the clip on the top of the cabinet. Refer to Figure 4-8.

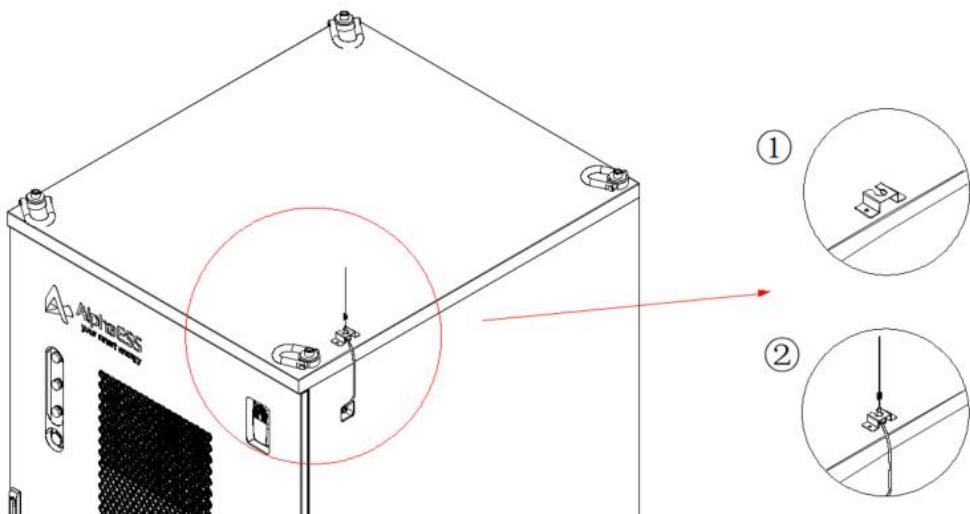



Figure 4-8

### 4.3.4 Remove Incoming-Port Cover

Cable entry holes are located on both sides of the cabinet bottom. Select the appropriate side based on on-site installation conditions. Use an M4 socket or a Phillips screwdriver to remove the M4 screws on both sides of the cable entry hole cover plate. Refer to Figure 4-9.

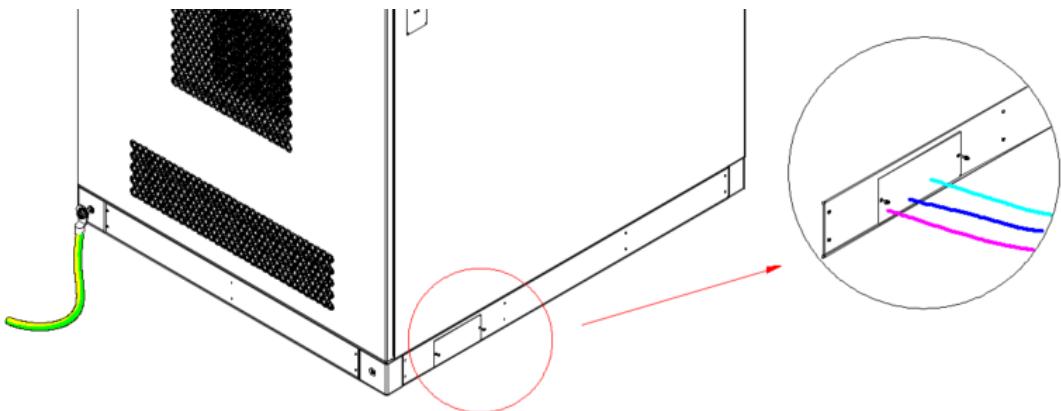



Figure 4-9

### 4.3.5 Load Connection

Route the load-side AC cables through the side entry port into the cabinet base, then feed them through the base gland plate into the cabinet interior. Cut the rubber grommet to match the cable diameter, pass the cable through the grommet to the PCS, and complete the connections in the specified sequence.

The maximum current, recommended cable size and terminal type for each model are given in the table below.

| Model          | Max Current (A) | Phase      | Recommended cable size (mm <sup>2</sup> ) | Terminal Model |
|----------------|-----------------|------------|-------------------------------------------|----------------|
| STORION-H30-G3 | 45.5            | L1/L2/L3/N | 16                                        | KST TL16-8     |

## Installation

|                |      |            |    |            |
|----------------|------|------------|----|------------|
|                |      | PE         | 16 | KST TL16-8 |
| STORION-H50-G3 | 75.8 | L1/L2/L3/N | 25 | KST TL25-8 |
|                |      | PE         | 16 | KST TL16-8 |

1. Verify that the AC-load-side phase sequence is correct.
2. Use a multimeter to confirm that no voltage is present on the cables to be connected to the load side.
3. Select the appropriate cable according to the system model. Ensure that the selected cable specification can safely carry the maximum current, and crimp the cables with the specified terminals provided in the accessory list.
4. Using an M8 socket, connect the cable conductors L1/L2/L3/N/PE to the corresponding L1/L2/L3/N/PE terminals on the PCS BACK-UP block inside the cabinet; tighten to 12 N·m.
5. Ensure all connections are secure.

The cabling connection of the load-side is shown below:

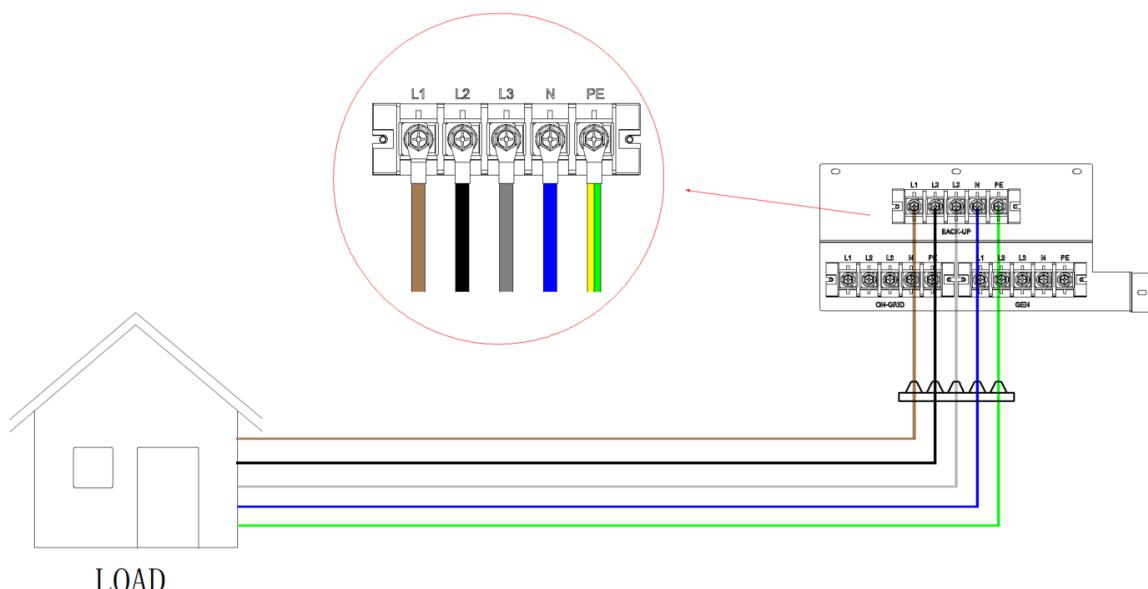



Figure 4-10

### 4.3.6 Grid Connection

Route the grid-side AC cables through the side entry port into the cabinet base, then feed them through the base gland plate into the cabinet interior. Cut the rubber grommet to match the cable diameter, pass the cable through the grommet to the PCS, and complete the connections in the specified sequence.

The maximum current, recommended cable size and terminal type for each model are given in the table below.

| Model          | Max Current (A) | Phase      | Recommended cable size (mm <sup>2</sup> ) | Terminal Model |
|----------------|-----------------|------------|-------------------------------------------|----------------|
| STORION-H30-G3 | 90.9            | L1/L2/L3/N | 25                                        | KST TL25-8     |
|                |                 | PE         | 16                                        | KST TL16-8     |
| STORION-H50-G3 | 121.2           | L1/L2/L3/N | 35                                        | KST TL35-8     |
|                |                 | PE         | 16                                        | KST TL16-8     |

1. Verify that the AC-grid-side phase sequence is correct.
2. Use a multimeter to confirm that no voltage is present on the cables to be connected to the grid side.
3. Select the appropriate cable according to the system model. Ensure that the selected cable specification can safely carry the maximum current, and crimp the cables with the specified terminals provided in the accessory list.
4. Using an M8 socket, connect the cable conductors L1/L2/L3/N/PE to the corresponding L1/L2/L3/N/PE terminals on the PCS ON-GRID block inside the cabinet; tighten to 12 N·m.
5. Ensure all connections are secure.

The cabling connection of the grid-side is shown below:

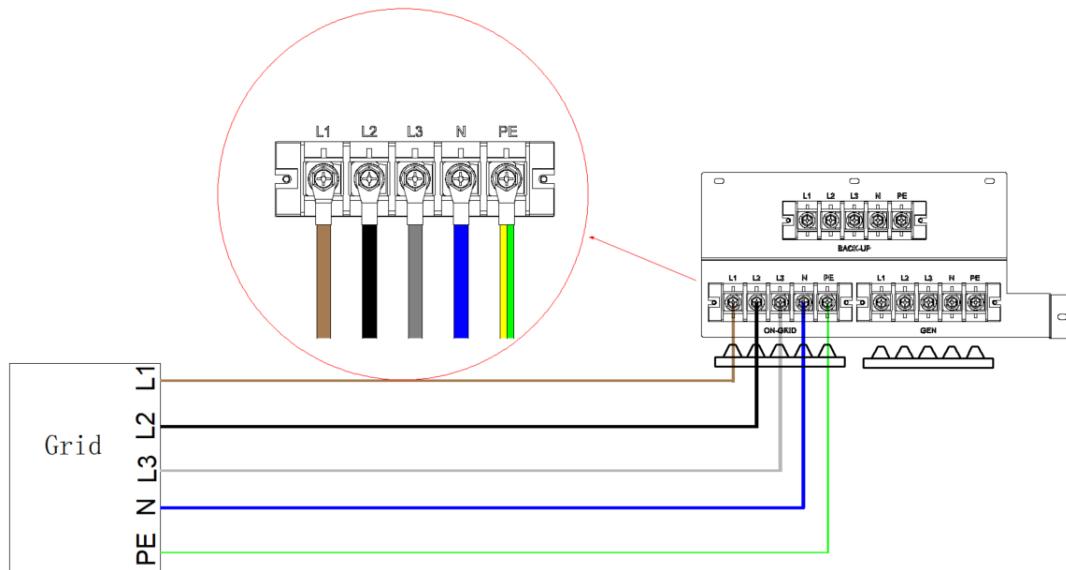



Figure 4-11

### 4.3.7 Diesel Generator Side Connection

#### 4.3.7.1 Diesel Generator Power Cable Connection

Route the generator-side AC cables through the side entry port into the cabinet base, then feed them through the base gland plate into the cabinet interior. Cut the rubber grommet to match the cable diameter, pass the cable through the grommet to the PCS, and complete the connections in the specified sequence.

The maximum current, recommended cable size and terminal type for each model are given in the table below.

| Model          | Max Current (A) | Phase      | Recommended cable size (mm <sup>2</sup> ) | Terminal Model |
|----------------|-----------------|------------|-------------------------------------------|----------------|
| STORION-H30-G3 | 54.5            | L1/L2/L3/N | 16                                        | KST TL16-8     |
|                |                 | PE         | 16                                        | KST TL16-8     |
| STORION-H50-G3 | 90.9            | L1/L2/L3/N | 25                                        | KST TL25-8     |
|                |                 | PE         | 16                                        | KST TL16-8     |

## Installation

1. Ensure the AC wiring phase sequence on the diesel generator side is correct.
2. Use a multimeter to confirm that no voltage is present on the cables to be connected to the generator side.
3. Select the appropriate cable according to the system model. Ensure that the selected cable specification can safely carry the maximum current, and crimp the cables with the specified terminals provided in the accessory list.
4. Using an M8 socket, connect the cable conductors L1/L2/L3/N/PE to the corresponding L1/L2/L3/N/PE terminals on the PCS GEN block inside the cabinet; tighten to 12 N·m.
5. Ensure all connections are secure.

The cabling connection of the generator-side is shown below:

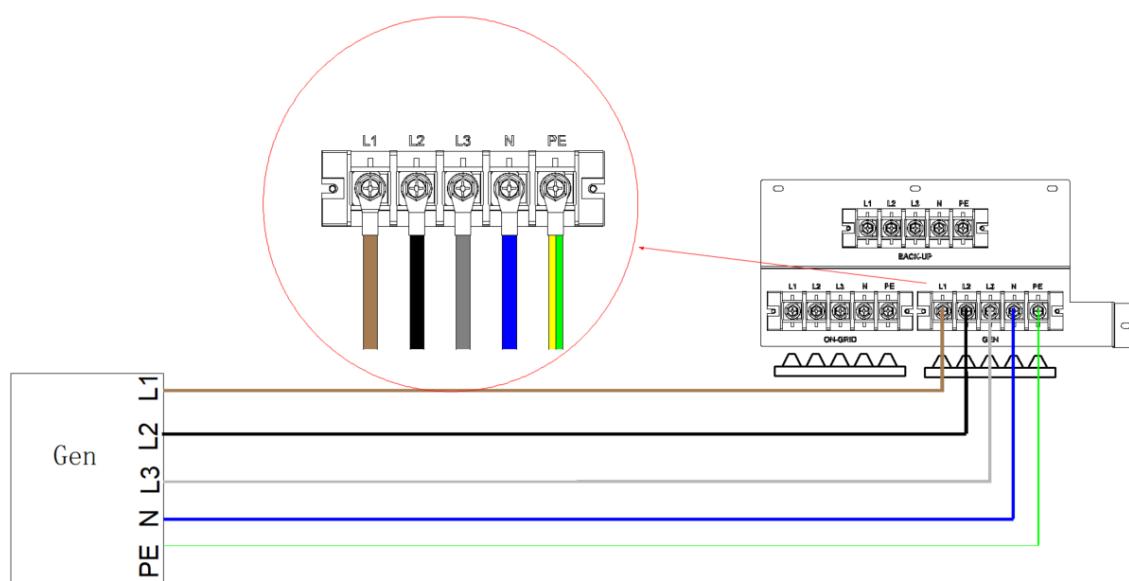



Figure 4-12

### 4.3.7.2 Generator Dry Contact Connection

1. It is recommended to use a two-core shielded twisted-pair cable with a cross-sectional area of 0.75 mm<sup>2</sup> or larger.

## Installation

2. Connect the dry contact (NO/COM) of the diesel generator to the system cabinet (XT4:11B/XT4:12B). Refer to Figure 4-13.

A diagram of the generator dry contact connection is shown below:

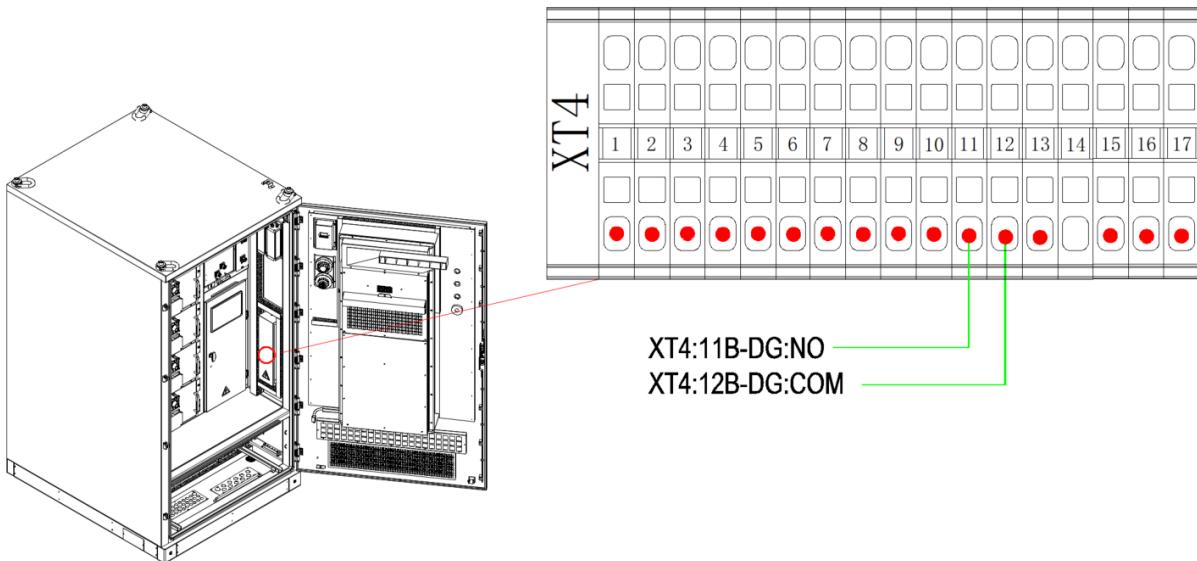



Figure 4-13

### 4.3.8 Meter and CT Connection

1. Connect grid phases L1/L2/L3/N to meter terminals 1/4/7/10 respectively to supply power and voltage reference.
2. Verify that the circuit is de-energised before installing the CTs.
3. Pass grid L1 through the CT (P1 → P2) and continue to the inverter grid-side L1 terminal; connect CT secondary S1 to meter terminal 31 and S2 to terminal 33.
4. Pass grid L2 through the CT (P1 → P2) and continue to the inverter grid-side L2 terminal; connect CT secondary S1 to meter terminal 34 and S2 to terminal 36.
5. Pass grid L3 through the CT (P1 → P2) and continue to the inverter grid-side L3 terminal; connect CT secondary S1 to meter terminal 37 and S2 to terminal 39.
6. Wire meter RS-485 terminals 24 and 25 to system-cabinet terminals XT4:13B and XT4:14B respectively to complete the communication link.

## Installation

7. If a diesel generator is present, install its meter and CTs in the same way as for the grid side, then connect generator-meter RS-485 terminals 24 and 25 to grid-meter RS-485 terminals 19 and 21 to establish the daisy-chain communication.

The meter and CT connection is shown below:

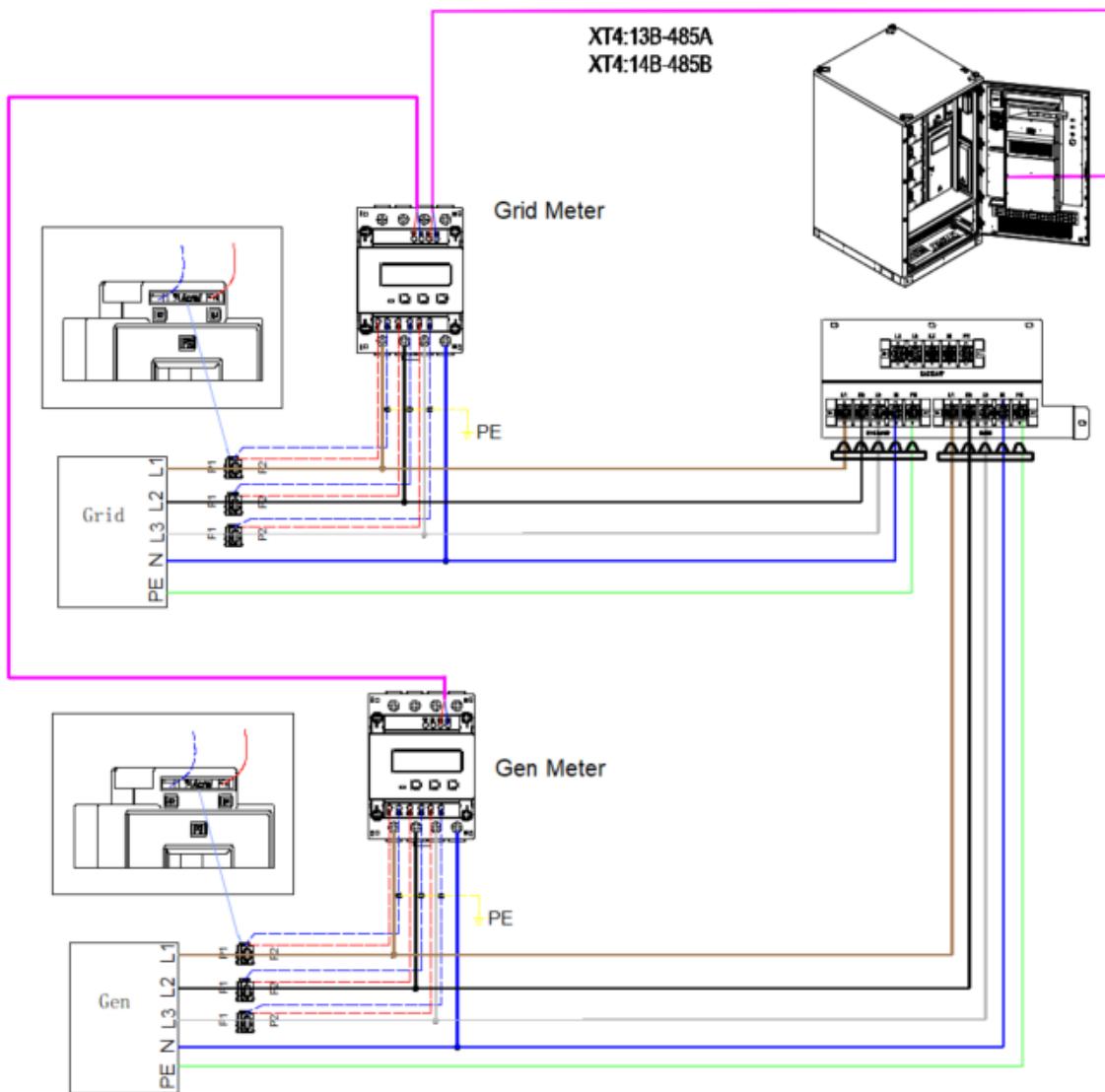



Figure 4-14

## Installation

To set the communication address or baud rate, follow the steps below:

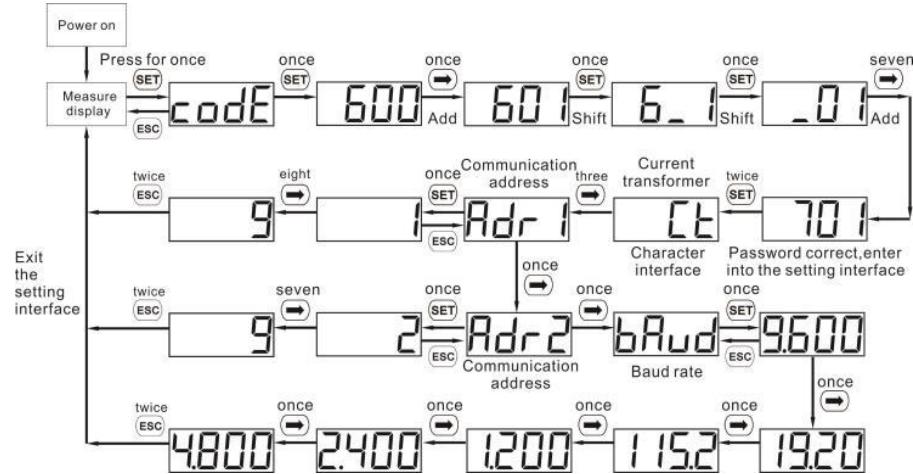



Figure 4-15

Use this procedure to check the baud rate and set the communication address. The baud rates and corresponding addresses for each meter are listed below.

|                                |      |
|--------------------------------|------|
| Grid Meter Address             | 101  |
| Diesel Generator Meter Address | 182  |
| Communication Baud Rate        | 9600 |

If the direct-connection method is used, ensure the current is less than 50 A. The installation procedure is as follows.

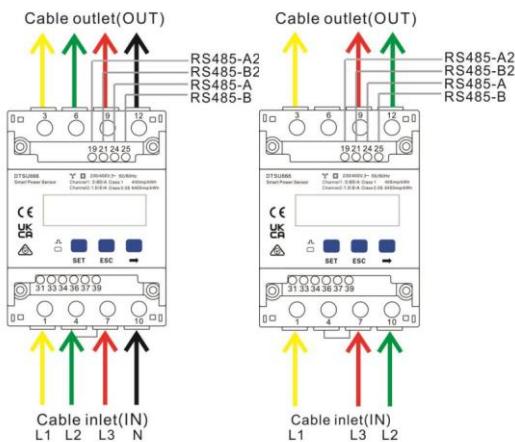



Figure 4-16

### 4.3.9 PV Connection

Select the appropriate cable specifications based on the actual situation. The recommended specifications are as follows:

| Name     | Outer Diameter | Conductor Cross-Section                              |
|----------|----------------|------------------------------------------------------|
| DC Cable | 5.9~8.8mm      | 4mm <sup>2</sup> (12AWG) or 6mm <sup>2</sup> (10AWG) |

1. Peel off the DC cable insulation sleeve for 7 mm. Disassemble the PV connector in the packing list. Insert the DC cable through the DC connector nut into the metal terminal and press the terminal with a professional crimping plier, with the "Phoenix CRIMPFOX-RC 10" being the recommended choice. Pull back the cable with some power to check if the terminal is well-connected to the cable.

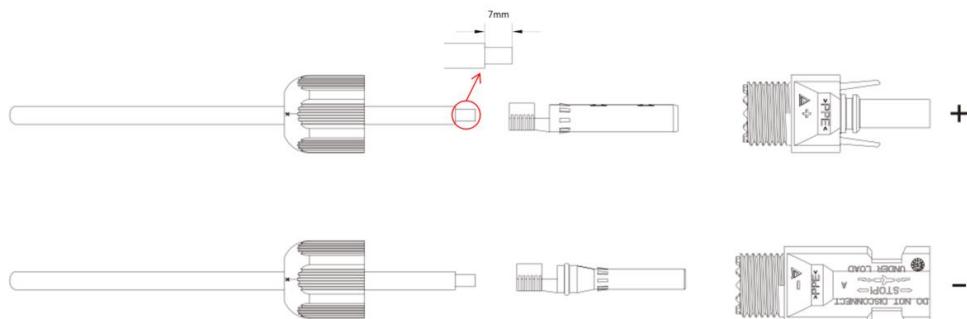



Figure 4-17

2. Insert the positive and negative cables into the corresponding positive and negative connectors, pull back the DC cable to ensure that the terminal is tightly attached in the connector.
3. To ensure proper sealing of the terminal, use an open-end wrench to securely tighten the nut to the end.

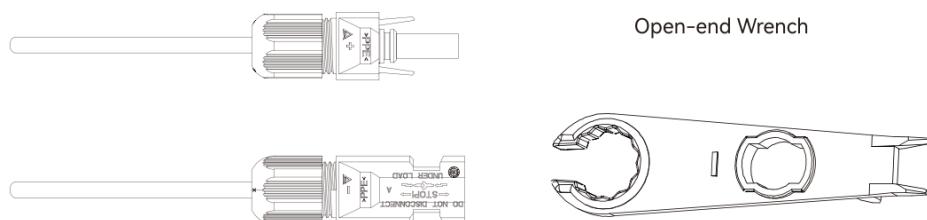



Figure 4-18

## Installation

4. Check whether the DC switch is on the "OFF" position.
5. Check whether the cable polarity of the PV string is correct. The maximum input voltage for the PV string is 950v. If the voltage of PV string ranges from 950V to 1000v, the inverter will enter standby mode. Exceeding 1000V will result in inverter damage.
6. Insert the positive and negative connectors into the inverter DC input terminals respectively, a click sound should be heard if the terminals are well connected.

A diagram of the PV-side cable connection is shown below:

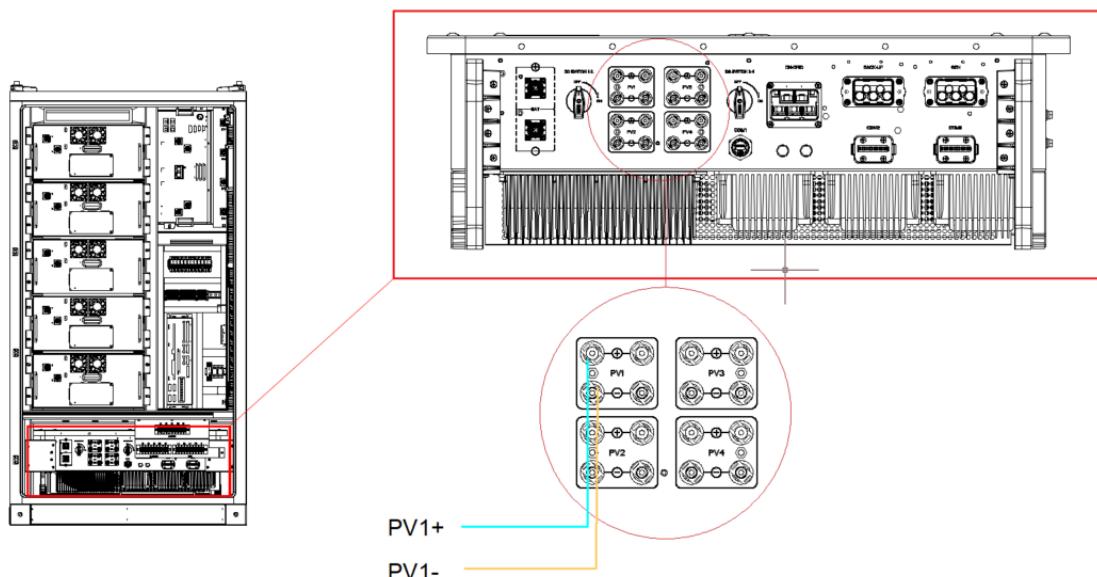



Figure 4-19

If a PV meter is configured, its connection method is consistent with that of the grid side. The PV meter address and communication baud rate are as follows:

|                         |      |
|-------------------------|------|
| PV Meter Address        | 121  |
| Communication Baud Rate | 9600 |

### 4.3.10 Network Connection

1. For wireless connection, insert the SIM card into the 4G router inside the cabinet's distribution box; wait 3 minutes and check the system's network status via SCADA.

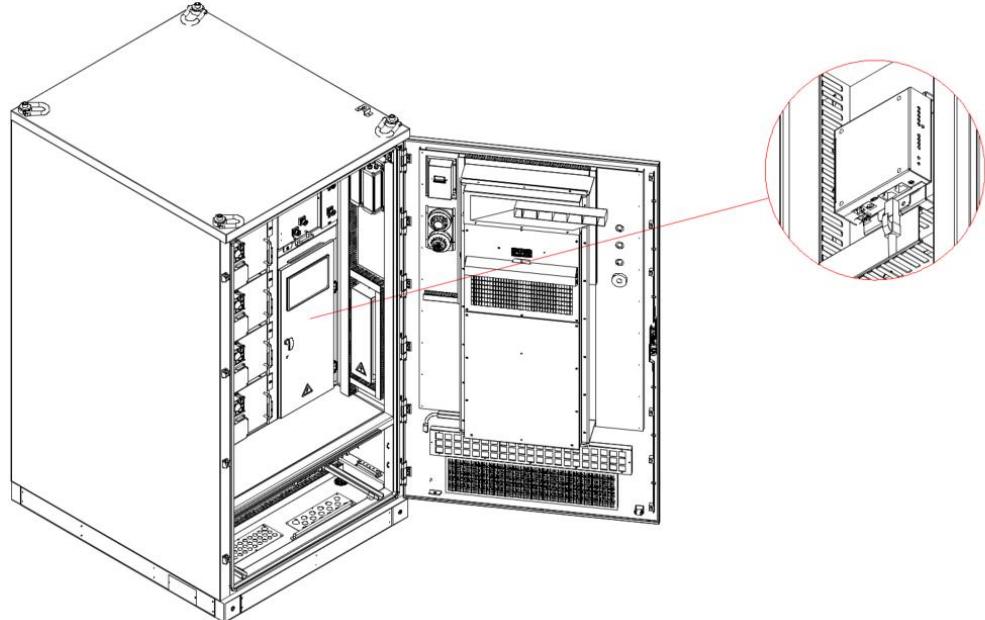



Figure 4-20

2. For wired connection, plug the active Ethernet cable into Net1 on the cabinet's terminal block; wait 3 minutes and verify the network status via SCADA.

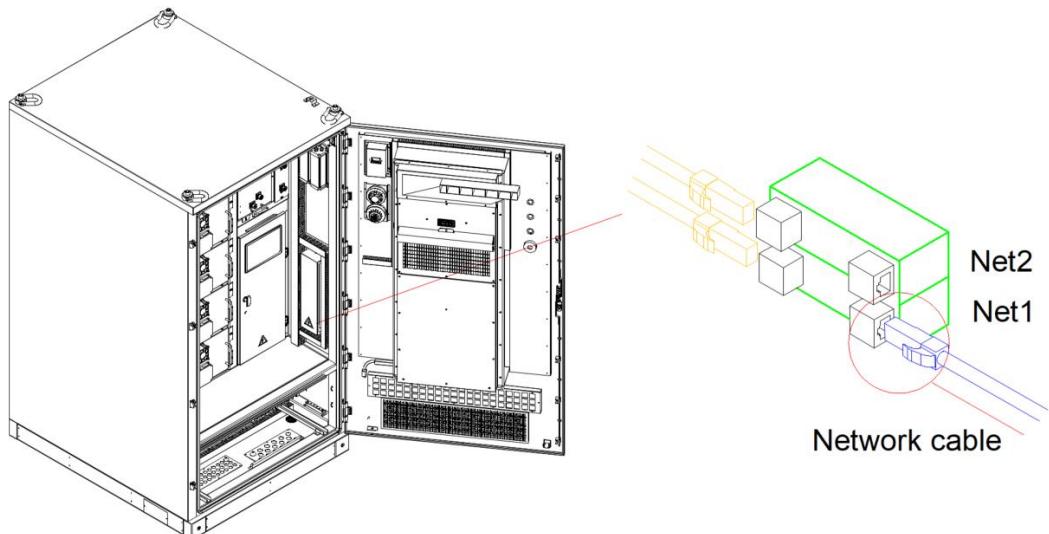



Figure 4-21

### 4.3.11 Expansion Cabinet Connection (Optional)

After the expansion cabinet has been moved to the installation site with a forklift or other equipment, secure its base with M12 screws (supplied by the customer) and ground it in the same way as the system cabinet.

Remove the side cable-entry blanking plates from both the system and expansion cabinets. Route the expansion-cable harness out through the bottom of the expansion cabinet and in through the side cable entry of the system cabinet. For the cable diameter, cut a cross in the top of the rubber grommet and feed the cable through it.

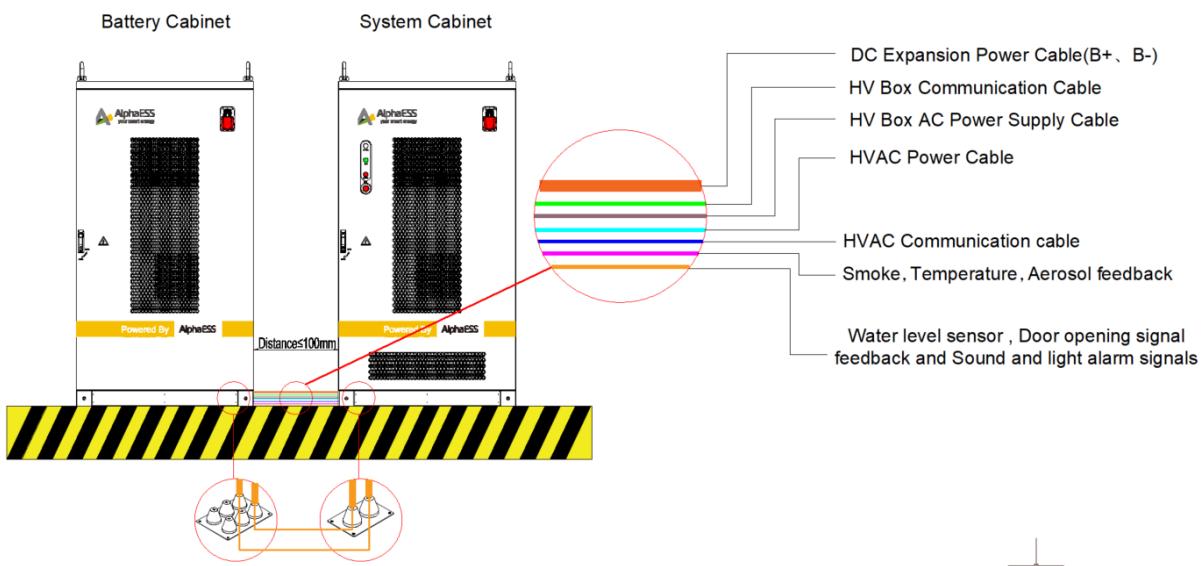



Figure 4-22

The expansion cabinet comes pre-installed with all cable harnesses and crimped terminals. Complete the wiring by following the steps below:

1. Route the B+ and B- DC power cables from the expansion cabinet through the bottom of the cabinet into the system cabinet. Then, along the internal wiring channel, connect them to the B1+ and B1- ports of the system cabinet's busbar box.

## Installation

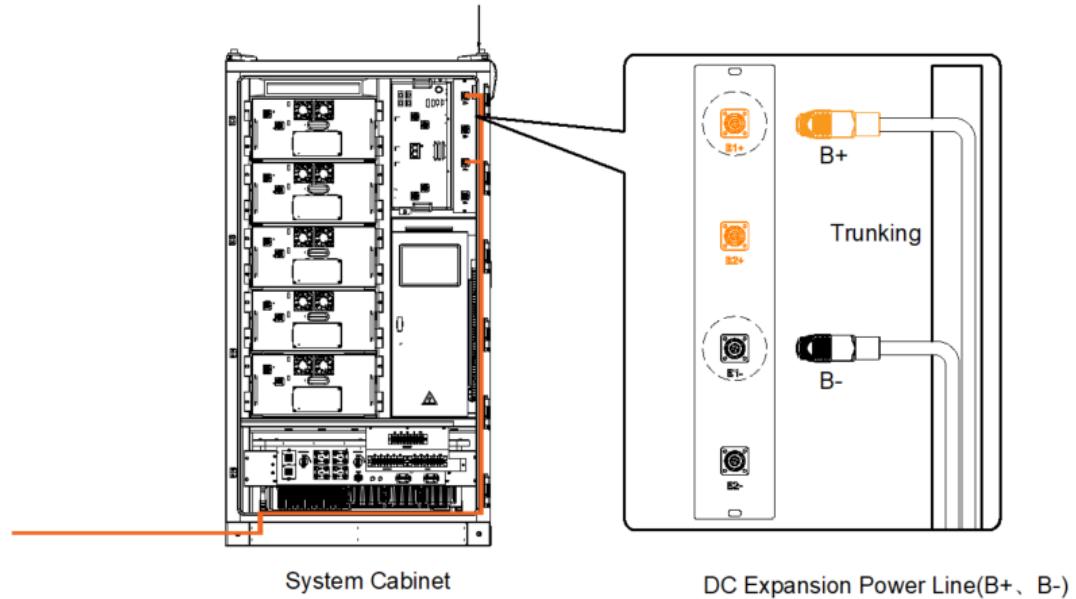



Figure 4-23

2. Route the AC power cables labeled L and N from the expansion cabinet through the bottom of the cabinet into the system cabinet. Then, along the internal wiring channel, connect them to the vacant AC terminals on the high-voltage box of the system cabinet.

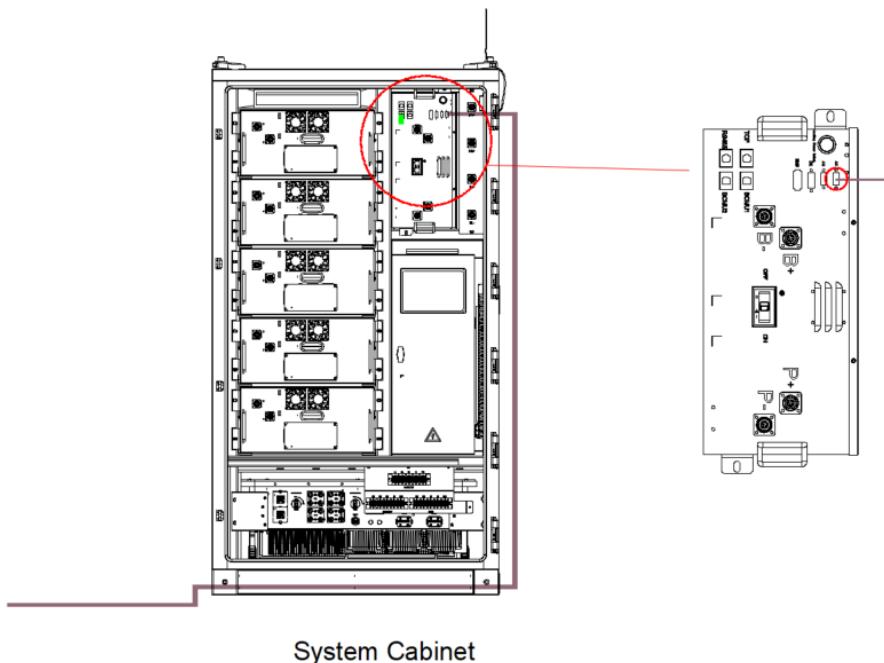



Figure 4-24

## Installation

3. Remove the terminal resistor from the BCMU2 port of the system cabinet. Then, route the network cable from the expansion cabinet through the bottom of the cabinet into the system cabinet. Along the internal wiring channel, connect it to the vacant BCMU2 communication port on the high-voltage box of the system cabinet.

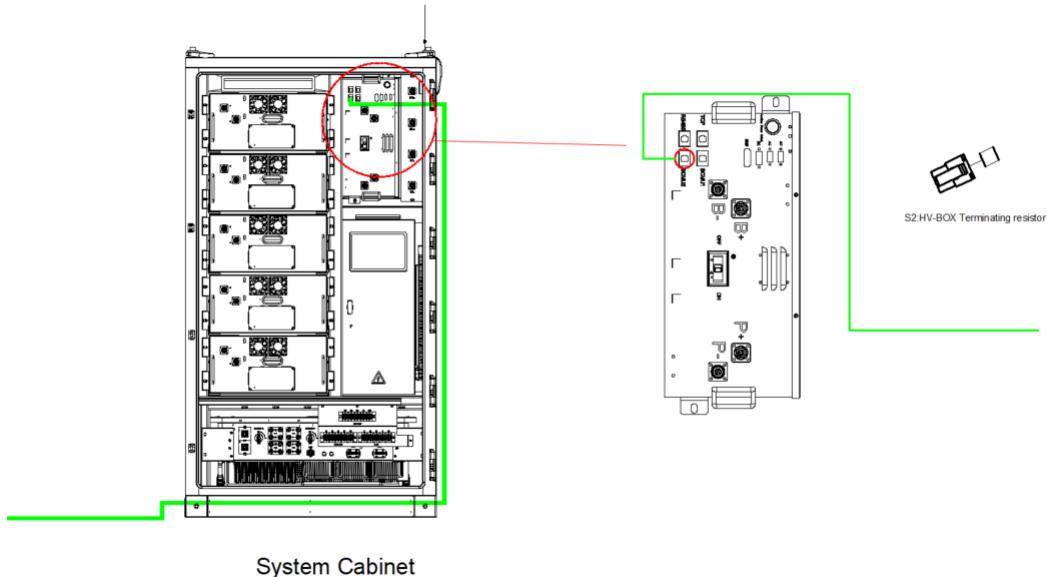



Figure 4-25

4. Route the HVAC power cables labeled HVAC:L and HVAC:N, along with the communication cables labeled HVAC:485A and HVAC:485B, from the expansion cabinet through the bottom of the cabinet into the system cabinet. Then, along the internal wiring channel, connect them to terminals 1B to 4B of the terminal block XT6 in the system cabinet.
5. Route the two 6-core cables from the expansion cabinet through the bottom of the cabinet into the system cabinet. Then, along the internal wiring channel, connect them to terminals 5B to 16B of the terminal block XT6 in the system cabinet according to the cable labels.
6. Remove the jumper between terminals 13 and 14 on the XT6 terminal block.

## Installation

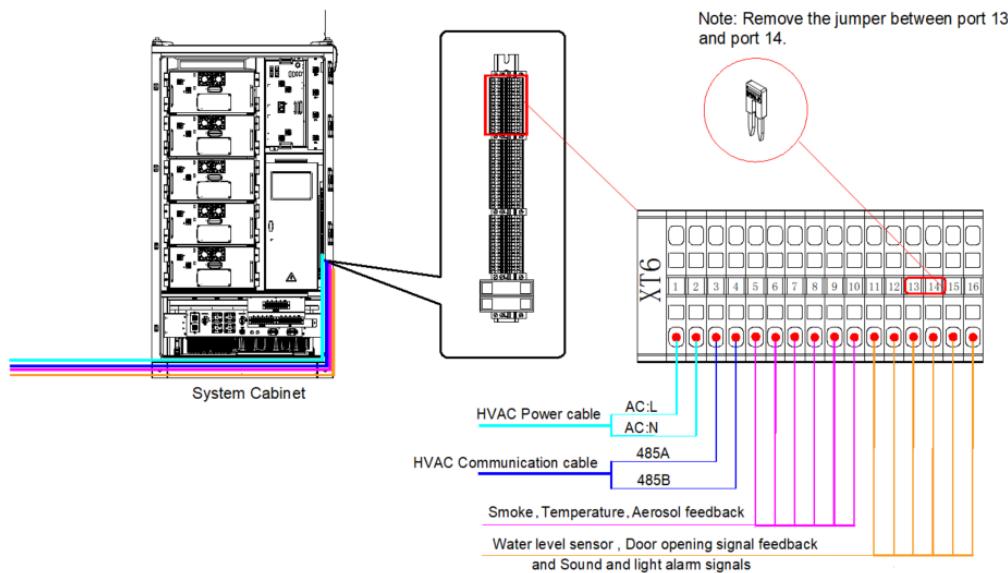



Figure 4-26

After completing all cable connection, it is necessary to add the battery and air conditioning equipment on the SCADA of the system cabinet. The operating steps are as follows:

1. On the system cabinet SCADA, navigate to Maintain -> Basic parameters configuration.
2. Choose Device Operation, configure according to the following settings, and click "Write".

| Operation Type    | Equipment category | Equipment subclass | Protocol      | Model      | Device ID  | Upload cycle to cloud platform (s) |
|-------------------|--------------------|--------------------|---------------|------------|------------|------------------------------------|
| <b>Add Device</b> | battery            | cluster            | ebp-can-alpha | M77314_S   | 0x02010001 | 300                                |
| <b>Add Device</b> | Other              | air_condition      | modbus-tcl    | TC003MH2AA | 0x0700001  | 300                                |

## 5. Startup and Operation

After system wiring is completed, the following steps must be carried out before start-up:

1. Use a multimeter to measure the voltage at the high-voltage box input terminals; the acceptable range is given in the "System Normal Voltage Range" table at the end of this document.
2. With an insulation tester, check the insulation resistance at the high-voltage box input (B+ to ground and B- to ground); the resistance must be  $\geq 1 \text{ M}\Omega$ .
3. For further details, refer to the Operation Manual.

## 6. Technical Contact

If you have any technical issues with our products, please contact us. The contact information can be found on the front page of this manual. To help us quickly resolve your issue, please provide the following information:

- A. System configuration
- B. Product serial number
- C. Software version number
- D. Fault information
- E. Photovoltaic module information

## Attachment

### 7. Attachment

#### 7.1 System Installation of a Torque Wrench

| Number | Location                                                     | Specification & Material                                                                                                      | Qty   | Torque (Nm) |
|--------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| 1      | Mount antenna bracket                                        | Screw, Stainless Steel 304, M5*12, Cross Pan Head, Triple Combination                                                         | 2pcs  | 2.8±10%     |
| 2      | Mount battery and high-voltage box, mount PCS                | Screw GB/T9074.13 SUS304 Natural Color, Cross Recessed Hexagon Triple Combination M8*20                                       | 26pcs | 15±10%      |
| 3      | Mount busbar box, mount EMS box                              | Cross Recessed Hexagon Head Bolt with Spring Washer and Flat Washer Assembly, GB/T9074.13, Stainless Steel 304, Silver, M6*20 | 6pcs  | 8±10%       |
| 4      | Mount limit switch, mount router                             | Screw GB/T 9074.13 SUS304, Cross Recessed Hexagon Triple Combination Screw M4*14                                              | 6pcs  | 1.6±10%     |
| 5      | Mount explosion-proof light, mount aerosol fire extinguisher | Nut GB/T6187.1-2000 M5, Hexagon Flange                                                                                        | 16pcs | 5±10%       |
| 6      | Mount barrier terminals and M8 nuts on PCS side              | M8 Nut                                                                                                                        | 20pcs | 15±10%      |
| 7      | Secure PCS mounting ears                                     | M5 Screw                                                                                                                      | 8pcs  | 5±10%       |

#### NOTE

Please follow the recommended torque values in the table. If there are any special or abnormal situations, please provide your feedback to an AlphaESS engineer.

## 7.2 System Normal Voltage Range Table

| Number of Batteries | M77314-S    |
|---------------------|-------------|
| 3                   | 208.8V~252V |
| 4                   | 278.4V~336V |
| 5                   | 348V~420V   |